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Renewable Energy Challenges: “Merit Order Effect”
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Renewable Energy Challenges: “Merit Order Effect”
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Renewable Energy Challenges: “Merit Order Effect”
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Electro Mobility Challenges

EV range (=capacity), price and charging
time (=power) directly affects EV adoption

THETIPPING POINTS
TO MAINSTREAM
EVADOPTION

The average price at which
consumers in our study said they
would consider buying an EV:

$36,000

Range and price are inversely related

to adoption and have met or are
expected to meet average consumer
requirements by 2030 in North America

1. PRICE

The average charge time at which
consumers in our study said they
would consider buying an EV:

31 MINS

Charging rate lags behind due to EV
battery constraints, grid limitations and
current lack of suitable infrastructure

2.CHARGE TIME

avera g g at which
study said they
ld con d b uying an EV:

469KM

3.RANGE

Image Source: Castrol, BP, Oxford Analytica. Accelerating the EVolution: The tipping
points to mainstream electric vehicle adoption
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Electro Mobility Challenges

Consumers and industries (e.g. trucking) require a spatially inclusive
and comprehensive fast charging network

e But, currently charging stations are scarce outside major urban
centers. Long distance gaps exist throughout NA.
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Image Source: G. Doluweera, F. Hahn, J. Bergerson, M. Pruckner. A scenario-based study on the impacts of
electric vehicles on energy consumption and sustainability in Alberta.” Appl. Energy 268, 2020, 114961.
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Electrical energy storage (EES) is needed to:

Improve power reliability and resilience

Enable high ratio of renewable (wind and
solar) power generation

Reduce cost of providing power to
consumers

Enable electro mobility

Diminish GHG emissions
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Mechanical Electrochemical Electrical
Fumped Hydro-PHS f Secondary battery Capacitor
Lead-acid/NaSiLi-ion Supercapacitor
— —
" Flow battery ' Superconducting
Thermochemical Chemical Thermal
Solar fuels Sensible/latent
Solar hydrogen heat storage

Image source: Luo, X.;Wang, J.; Dooner, M.; Clark, J. Overview of current development in electrical energy

storage technologies and application potential in power system operation. Appl. Energy 2015, 137, 511-536.
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Classification of EES Technology
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Cycle Efficiency
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Image source: H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding. Progress in electrical energy storage
system: a critical review. Prog Nat Sci, 19 (2009), pp. 291-312
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Technology Maturity
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Image source: H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding. Progress in electrical energy storage
system: a critical review. Prog Nat Sci, 19 (2009), pp. 291-312
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EES Operating Range and Challenges to UK Energy Systems

1PWh

System Challenges Mature/commercialized EES tech. Demo/developing EES tech.

UK seasonal

heat
10TWh 2
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UK Daily
peaking
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heat
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o o
Flywheels o Flow battery
S o Net connecte | Battery

_amm Conventional battery
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Millisecond Second

Discharge time duration atrated power

Image source: Luo, X.;Wang, J.; Dooner, M.; Clark, J. Overview of current development in electrical energy
storage technologies and application potential in power system operation. Appl. Energy 2015, 137, 511-536.
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EES Capital Cost - Power
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Data source: Luo, X.;Wang, J.; Dooner, M.; Clark, J. Overview of current development in electrical energy
storage technologies and application potential in power system operation. Appl. Energy 2015, 137, 511-536.
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FES application areas

e System ancillary services
e Smart grid support

FES attractive attributes

e Excellent cycle efficiency
e Mature technology
e Excellent capital cost in terms of power

FES challenges

e High capital cost in terms of capacity
e High self-discharge (t > minutes, hours)
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Basic FES Characteristics

Discharging — Charging
Electrical

3OVHOLS ADYINT T3IHMATS

Primary components:

 Rotor (storage device: Determines storage capacity (energy),
rotates at high speeds (1,000’s to 10,000’s RPM)

* Electrical machine (motor/generator): Determines rate of
charge/discharge (power)

=» Power and capacity independent design variables

Ancillary components:

* Housing: Safety and vacuum enclosure to reduce air friction

* Bearing system

 Power electronics
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Basic FES Components

\

o0

Rotor materials:

* Monolithic high-strength steel

e Circumferentially wound high-strength fiber-
polymer composites (e.g. carbon/epoxy)

Motor/Generator Unit

Magnetic
Coupling

Radial
Bearings

Aramid Fibre
Composite Rim

Magnetic Thrust

Flywheel Hub

Bearing

B
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FES cross-section view
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Optimizing Energy Consumption and Operating Cost with FES in LRT

Collaborators: H. Baier (TUM), M. Secanell (UA)

ARRS -

LN

\

Traction

Project objectives
Optimize FESS configurations for regenerative braking in LRT:

 Maximize percent energy savings (PES)
 Maximize percent cost savings (PCS)
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Optimizing Energy Consumption and Operating Cost with FES in LRT

Conventional traction / braking @ Fres
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Optimizing Energy Consumption and Operating Cost with FES in LRT

FES assisted traction / braking @ Fres
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Optimizing Energy Consumption and Operating Cost with FES in LRT
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Findings

Depending on track, payload, number of vehicles per train and type of FES
(based on operating cost over 5 years):

=>» predicted PES: 9.8% to 31.2%

=» predicted PCS: 0.55% and 11.1%
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Bus Fleet Charging

 20% of City of Edmonton GHG emissions come from transit fleet.

 CoE converting diesel bus fleet to battery electric buses (BEB) by
2030, with 40 BEBs already on the roads.

* Bus fleet operation creates potential power surges with
challenges for grid connection.

* Integration of FES
provides high-power
charging capabilities.

* ESSis charged steadily &
from grid, provides fast . . L%g) ~RPTERRA
charging capabilities ' *

when BEB is connected. Y
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Bus Fleet Charging

Modeling of ES integration:

—Facility Power Consumption (kW)

—— ESS Power Consumption (kW)

1000 kW cap on grid power.

2000

— Charger Consumption (kW)

No disruption in bus service. o

Total of 25 commercial FES
units (each 160 kW, 30 kWh).

Comparison with commercial

=
o
o
o

Power (kW)
u
(=]
o

battery ES (BES) 1.5 MWh. i |

Both BES and FES meet o

'1000 T T r T T T T T T T T T T T T T T T T T T T

system requirements.

OOZ
008

‘ _ 8835885
Cost benefit analysis performed

for several scenarios (net present
value and internal rate of return)

=>» FES always cost advantageous.
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Simulation of FES integration
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Islanded Micro-grids
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Image source: University of Sheffield
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Islanded Micro-grids

Modeling of standalone micro-grids (business or small community):
e Scenario 1: Fossil fuel based base power.
e Scenario 2: Base power augmented by solar PV and BES.

e Scenario 3: BES and FES hybrid alternative.
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=>» BES/FES hybrid system typically most cost effective.
=>» GHG emission not necessarily reduced by hybrid system.
=>» System optimization inevitable for specific conditions.
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EV Charging Network
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! This assumes (i) the station has four direct-current fast-charging 50 kW chargers; (ii) 11 charging sessions occur during the time period profiled
(4AM to 6PM); (iii) there is at least one instance where two cars charge simultaneously; (iv) the demand charge rate is $30 per kW; and (v) the
battery-storage system is 150 kWh and can discharge at up to 75 kW.
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EV Charging Network
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* FES capable of high-power charging
and discharging without ES
degradation. Temperature
independent operation.

 FES-based fast charging systems are
in emerging.

e Claimed significantly reduced Global
Warming Potential compared to
Li-lon BES.
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Image source: Chakratec ;.
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Overview FES Design Needs

Recall FES challenges:
1. High capital cost in terms of capacity

—
S
n
O
M
9
)
P
X
m
%)
m
>
X
(@)
I

2. High self-discharge (t > minutes, hours)
=» Improved FES designs: Fabrication and material innovation
o Structure optimization (rotor)

Study of long-term operation (~20 years)

®
o Electrical machine integration

o (Improvements in electrical machines)
®

(Innovative bearing systems)
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Structure Optimization

Rotor design (storage capacity)

* Dimensions

* Number, material, size of rims
e Hub geometry and material

e Fabrication and assembly

60 mm

Rotor cross-section view
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FES Self-discharge

Collaborator: M. Secanell (UA)

FES self-discharge caused by frictional forces acting on flywheel:
* Aerodynamic drag Pap = Cppw?
* Bearingrolling friction  Pyg = Tygw

* Electromagnetic forces Pyg = Tgmw + Cepiw + Cema@? + Cepmap®?
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Experimental passive discharge with decoupled (left)
and coupled electrical machine (right)

ABBY-NET Online Lecture Series 2021 #2, February 24, 2021




Study of Material Viscoelastic Behavior

e Rotors experience high-stress loading.
* Stresses depend on material properties, operating conditions.

HO4V3iS3Y NOISIJ S34

e Stress relaxation and material aging are of concern.
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Study of Material Viscoelastic Behavior
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* Transverse-to-fibers material properties are poorly characterized,
especially for viscoelastic behavior.

=» Approach: Time-temperature superposition principle

* Long-term behavior is typically difficult to characterize:
o Suitable specimen configuration and fabrication
o Long time horizons
o Need for specialized testing equipment
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Electrical Machine Integration

Collaborator: A. Qureshi (UA)

=>» Eliminate externally coupled electrical machine
=>» Design ring (arc) shaped polymer bonded permanent magnets
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=>» Develop innovative manufacturing technologies to create field-
structured permanent magnets

Carbon fibre rotor l <—

Aramid fibre rotor

Magnetic composite rotor

Electrical windings

Flywheel Housing — ¢

Rotor arrangement (left) and permanent magnet configuration (right)

.
Y
i
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Electrical Machine Integration

=>» Enhance magnetic properties (residual magnetism) by magnetic
particle structuring

=>» Fabrication by magnetic field induces particle structuring
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=>» Current developed permanent magnets exhibit 0.3 Tesla in
remanence (target ~0.7 Tesla)

H — Applied Magnetic field

| D
Dipole moments induced in magnetic
particles, results in particle chaining

Liquid Polymer Magnetic particle Oriented Magnetic particle chain
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Electrical Machine Integration

Designh parameters:

Magnetic materials (e.g. rare earth and/or ferrites)
Polymer systems (Heat curable and heat/UV curable resins)

HOWV3S3IYy NOISIJ S34

Assistive materials (Reinforcing fibers, processing additives)
Fabrication method (Additive manufacturing)

S S— T
NTS BSD MQA Glass Surface0dtif “2# ALBERTA 40X 1500kV _87mm _ NTSBSDMQA Glass Surfaceot it & ALBERTA

100 X 15.00kV 88 mm
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Where Do We Go From Here?

e ES essential to reducing GHG
(e.g. renewables integration, Improving
electro-mobility). fabrication cost

e FES attractive for smart grid
support system, ancillary
services (e.g. EV charging).

* Comparatively mature Specifications
technology, but marginalized from system
by BES commercial interests studies
and popularity.

 Research and development needed to drive application-specific
design optimization and innovation.

e Further potential for hybrid ES with FES.

* Academic research needed on FES system integration (e.g. EV
charging networks) to assess potential and inform FES design.

Study of life-

cycle
performance

FES design
drivers

Material

innovation
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