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Executive Summary 
Openings in forest canopy cover play a crucial role in the rejuvenation of forest structure 
and the maintenance of biodiversity. However, if human disturbances affect the habitat 
of certain species, openings may have detrimental effects on the ecosystem. Airborne laser 
scanning (ALS) and digital aerial photogrammetry (DAP) are three-dimensional remote-
sensing data sets that both have the potential to characterize canopy openings. While 
ALS is the more well-known data source of the two, DAP is less expensive to acquire.   

The objective of this study was to examine the capacity of ALS and DAP to 
canopy openings in the boreal forest of northern Alberta. While previous authors have 
conducted similar studies, they have all taken place in dense-canopy tropical and 
temperate rainforests. The current area of interest (AoI) is a 1-km2 expanse of boreal 
forest situated in northern Alberta, characterized by highly variable vegetation cover, 
ranging from low vegetation density wet lands to densely forested, drier uplands. Thus, 
traditional definitions of opening, and approaches to opening detection must be 
reconsidered and were tested for their applicability in this study. In addition to natural 
openings, the study area also contains anthropogenic linear features that are the 
consequences of large-scale oil exploration. 

A fixed-height approach and variable-height approach to detecting canopy 
openings were applied to three canopy height models (CHMs) extracted from the two 
data sets: CHMALS, CHMDAP, and CHMHybrid, which is a combination of both DAP 
and ALS data. Validation was conducted based on field measurements, supplemented by 
visual image interpretation. 

Overall accuracies for CHMALS were 90% and 93% for fixed- and variable-height 
approaches, respectively, compared to 63% and 82% for CHMDAP, and 64% and 82% for 
CHMHybrid. Large errors of omission were produced by both the DAP and Hybrid data 
sets (15% - 46%). We found that especially small openings (< 200 m2) were incorrectly 
classified by DAP and Hybrid when using the fixed-height approach, and showed large 
errors of omission (> 90%). Markedly better results were achieved in these smaller 
openings when using the variable-height approach. Accuracy only varied by 3% when 
using the variable-height approach with ALS data, and was distinctly higher for all 
opening-size classes. Number and average size of the openings detected varied clearly 
between the approaches, with ALS detecting more than twice the number of openings 
when using the fixed-height approach than the DAP/Hybrid data sets. The average 
opening size detected by the fixed-height approach was less than half the size of each 
model’s corresponding variable-height approach results. 

Lower overall accuracies and the omission of small openings are attributed to the 
method of data acquisition by DAP, which characterizes the top of canopy but doesn’t 
penetrate to the forest floor reliably. Thus, this optical technology is more vulnerable to 
occlusions, shadows, and tree sway: optical effects which negatively affect the image 
matching process and thus the quality of a detailed CHM.  

This study demonstrates that ALS is a more accurate means for monitoring 
canopy openings in the boreal forest, and that DAP data does not yet achieve the 



	

	

accuracies produced by ALS data in the context of detecting and mapping openings in 
this setting. However, given the improvements that were achieved in this study compared 
to previous studies, it is possible that with further software development, DAP will soon 
be a cheaper and more easily accessible means to monitor forest structure dynamics.  



 

	

Zusammenfassung 
Lücken im Blätterdach eines Waldes spielen eine wichtige Rolle im Regenerierungsprozess 
und Erhalt seiner Biodiversität. Wenn menschliche Eingriffe aber das Habitat einer 
Spezies signifikant beeinträchtigen, können sich diese Lücken negativ auf das Ökosystem 
auswirken. Im Untersuchungsgebiet, einem 1 km2 großen Bereich im borealen Wald in 
Nordalberta, Kanada, führten ausgedehnte Ölexplorationen zu einem Netzwerk aus 
Schneisen (sog. Linear features oder seismic lines). Airborne Laser Scanning (ALS) und 
Digital Aerial Photogrammetry (DAP) wurden bereits auf ihre Eignung zur Detektion, 
Abgrenzung und Kartierung von Lücken im Blätterdach untersucht. ALS zeigte in 
mehreren Studien weitaus bessere Ergebnisse als DAP, allerdings bearbeiteten diese 
Studien hauptsächlich tropische und temperierte Regenwälder. Da DAP günstiger und 
leichter durchzuführen ist als ALS, sollen in dieser Arbeit die Genauigkeiten, mit denen 
ALS und DAP Lücken im borealen Wald detektieren miteinander verglichen werden. 

Das Untersuchungsgebiet weist eine außerordentlich hohe Variabilität der 
Vegetationsarten auf. Es sind sowohl sehr dünn bewachsene Gebiete in den niedriger 
gelegenen Feuchtgebieten, als auch sehr dicht bewachsene Stellen in den höher gelegenen 
Trockengebieten vorhanden. Aus diesem Grund mussten traditionelle Definitionen von 
Waldlücken und Herangehensweisen auf ihre Anwendungseignung in diesem Ökosystem 
überprüft werden. Zwei Lückenklassifizierungen wurden durchgeführt: 1) mittels festem 
maximalen Höhenwert (fixed height approach; FIX) und 2) mittels einem zur 
umgebenden Schirmhöhe relativen Höhenwert (variable height approach; VAR), und auf 
drei Canopy Height Models (CHM) angewandt: 1) CHMALS, 2) CHMDAP und 
3) CHMHybrid, einer Kombination der beiden Datenquellen. Die Validierung basiert auf 
in-situ Daten, welche um Daten aus visueller Bildanalyse ergänzt wurden.  

Gesamtgenauigkeiten für durch ALS erkannte Lücken liegen bei 90% für den FIX-
Ansatz und bei 93% für den VAR-Ansatz. Im Vergleich dazu liegen die 
Gesamtgenauigkeiten für von DAP erkannte Lücken bei 63% und 82%, und bei 64% und 
82% für vom Hybrid-Modell erkannte Lücken. Große Auslassungfehler (15% - 46%) 
wurden sowohl für das DAP- als auch das Hybrid-Modell verzeichnet. Vor allem kleine 
Lücken (< 200 m2) resultierten in den DAP_FIX und Hybrid_FIX Modellen in 
Auslassungsfehlern von > 90%. Diese kleinen Lücken wurden von den DAP- und Hybrid-
Modellen unter Anwendung des VAR-Ansatze deutlich besser detektiert. Die 
Genauigkeiten in den verschiedenen Größenklassen für das ALS_VAR Modell 
schwankten dagegen nur um 3% und waren insgesamt deutlich höher. Die Anzahl und 
durchschnittliche Größe der detektierten Lücken schwankte stark zwischen den 
verschiedenen Herangehensweisen; das ALS_FIX Modell erkannte mehr als doppelt so 
viele Lücken als die DAP- und Hybrid-Modelle. Die durchschnittliche Größe der von den 
FIX-Ansätzen erkannten Lücken war die Hälfte der entsprechenden Lücken, welche mit 
den VAR-Ansätzen erkannt worden waren.  

Geringere Gesamtgenauigkeiten und das Auslassen kleinerer Lücken werden auf 
die Methodik der Datenakquisition von DAP zurückgeführt. Diese erkennt lediglich die 
top of canopy, und kann die Baumkronen nicht wie ALS durchdringen. Dadurch ist diese 



	

	

optische Technik anfälliger für Störfaktoren wie Verdeckungen, Schattenwurf und 
Bewegung der Baumkronen zum Zeitpunkt der Bildaufnahme.  

Diese Studie zeigt, dass ALS ein geeignetes Mittel darstellt, um menschliche 
Einflüsse auf Waldsysteme zu überwachen, und dass DAP im Kontext der Detektion und 
Kartierung von Waldlücken im Untersuchungsgebiet noch keine ebenbürtige Alternative 
zu ALS ist. Betrachtet man allerdings die Fortschritte, welche im Vergleich zu früheren 
Studien festgestellt werden konnten, ist davon auszugehen, dass eine Weiterentwicklung 
von Software und Kameraeigenschaften DAP bald zu einer günstigeren Alternative 
werden lässt.  
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1 Introduction 
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1 Introduction 
Naturally caused canopy openings occur in every forest. They are an essential part of the 
natural mature forest stand development cycle and add to the health and upkeep of a forest 
ecosystem’s biodiversity (Feldmann et al., 2018; Lawton & Putz, 1988; Nagel et al., 2010; 
Runkle, 1982; Whitmore, 1989). Depending on the size and duration of the canopy opening, a 
significant increase in nutrient and solar radiation supply facilitates regrowth of diverse 
vegetation and offers new niches for birds, insects, and other fauna (Vepakomma et al., 2012). 
In addition to naturally occurring openings that are usually caused by small scale disturbances, 
such as wind throw (Bonnet et al., 2015), tree or branch falls (Ferreira De Lima, 2005; Fox et 
al., 2000) and snow destruction (Caron et al., 2009), anthropogenically affected sites like clear 
cuts or road clearings are kept free of vegetation, which prevents an increase of diverse 
regrowth. 

In addition to natural openings, the area of interest (AoI) for this research, a 1 x 1 km 
expanse of boreal forest south of Conklin in northern Alberta, Canada, is also affected by a 
variety of human disturbances; particularly seismic lines. Seismic lines are linear clear-cut 
corridors in the boreal forest which present in a grid-like fashion and are produced by heavy 
machinery to facilitate extensive seismic underground oil exploration (EMR, 2006). In addition 
to these corridors, roads, pipelines and bitumen extraction sites require large scale clear cuts 
(S. Chen et al., 2017; Downing & Pettapiece, 2006). These disturbances show cumulative effects 
on wildlife habitat and biodiversity (S. Chen et al., 2017).  

One representative of a negatively affected species is Rangifer tarandus caribou, the 
boreal woodland caribou, whose populations have shown a decline linked to seismic-line 
disturbances (Athabasca Landscape Team, 2009; Hebblewhite, 2017). A federal recovery plan 
identifies the amount and location of critical habitat for each woodland caribou population and 
points out the critical need for aggressive habitat protection and restoration measurements. As 
a necessity for a federal recovery plan under the Canadian federal Species-at-Risk Act (SARA), 
Environment Canada identifies an approach for continued monitoring of natural disturbances, 
as well as habitat quality and quantity (Environment Canada, 2012).  

Before three-dimensional (3D) opening detection was made possible by ALS using light 
detection and ranging (LiDAR) and specialized software was developed to compute large 
amounts of photogrammetry imagery, spectral remote-sensing approaches such as normalized 
difference ratios were a well-established way of assessing the state of a given area of vegetated 
land. The normalized difference vegetation index (NDVI) is the most commonly used spectral 
vegetation index (Coppin & Bauer, 1996; Jönsson et al., 2010; Senf et al., 2017; Zhirin et al., 
2016). Using the difference between strong absorption in the visible red, and reflection in the 
near-infrared (NIR) wavelength (equation 1), the NDVI is an index for “greenness” (Jönsson et 
al., 2010).  

!"#$ = (!$' − ')/(!$' + ') (1) 

where 

NIR = Near Infrared reflectance 

R = Red reflectance 
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The NDVI assumes values between -1 and 1, -1 –  0 representing low to no vegetation 
cover, and 0 –  1 representing denser vegetation cover (Wulder, 1998). Chen & Cihlar (2000) 
assess the validity of NDVI values in forests in Saskatchewan and Manitoba using in-situ 
measurements for their validation. They found that these vegetation indices were useful for 
determining leaf area index (LAI) for boreal forests, however, they note that the understory’s 
contribution can severely distort the calculated NDVI values. In addition, NDVI values change 
over the course of a year, with more reliable results being derived from satellite imagery 
acquired in the spring than in autumn. These limitations make spectral indices like the NDVI 
less reliable, but their easy usage and free access to data and software are their strong 
advantages.  

	
Figure 1 Two NDVI images derived for the study area: one in the early spring (leaf off, left) and another in mid 
summer (leaf on, right). Depicted are areas where NDVI < 0.1 are classified as opening (depicted in black) and 
areas where NDVI > 0.1 are classified as non-opening (depicted in white). It is apparent that there is little 
consistency between the two images and that they offer barely any reliability regarding the classification of opening 
vs. non-opening. This is mainly due to grassy seismic lines being classified as non-openings in the leaf-on imagery. 
The only disturbances which can be reliably classified as such are roads and clearings which are consistently 
completely free of any vegetation.  

Two NDVI images (figure 1) were derived for the study area, which produced 
unsatisfactory results. A threshold of 0.1 was chosen for the binary classification to consider 
Their overall accuracies (OvA) in detecting openings (defined as areas where NDVI < 0.1) 
were found to be 50% when based on an orthophotos acquired in May (NDVI_LeafOff) and 
71% for the LeafOn data set.  

Aiming for higher reliability and accuracy, airborne laser scanning (ALS) and digital 
aerial photogrammetry (DAP) were tested for their applicability in mapping openings in forest 
canopy. ALS and DAP are two different technologies with the ability to produce 3D point 
clouds. Using vegetation height instead of the greenness of vegetation constitutes are radically 
different approach in opening detection compared to normalized difference ratios.  

Various studies have examined the applicability of the ALS and DAP technologies in 
the detection and mapping of canopy openings, mainly in tropical and temperate rain forests, 
as well as temperate deciduous forests. In contrast to traditional field campaigns to gather in-
situ measurements, which are time consuming and costly (Bonnet et al., 2015; White et al., 
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2018), ALS and DAP have been used to efficiently examine canopy cover structure (S. Chen 
et al., 2017; Holopainen et al., 2015; Järnstedt et al., 2012; Lovitt et al., 2017). The opening 
detection accuracies were found to be 74.5% (Gaulton & Malthus, 2010), 82% (Bonnet et al., 
2015), 96.5% (Vepakomma et al., 2008; White et al., 2018) for ALS and 78.2% (Gaulton & 
Malthus, 2010)  and 50% and 59.5% for DAP (White et al., 2018).  

ALS has experienced a surge of popularity in the last decade and was even rumored to 
eventually replace stereophotogrammetry (Leberl et al., 2010). LiDAR’s ability to penetrate 
the canopy cover made it an ideal tool for forest-inventory assessment, and stereo imagery 
could not compete on price and output. However, the evolution of digital data acquisition, fully 
automated triangulation algorithms, dense matching, high density point clouds and 
unprecedented detail due to high geometric resolution made DAP affordable and easily 
accessible (S. Chen et al., 2017; White et al., 2018). In combination with lower costs and the 
emergence of efficient consumer grade unmanned aerial vehicles (UAVs), these developments. 
initiated a new enthusiasm for photogrammetry (Leberl et al., 2010). Especially in the domain 
of repeated multitemporal monitoring, as demanded by the Provincial Woodland Caribou 
Recovery plan (Alberta Government, 2017), lower costs and easier accessibility of DAP data 
would make stereophotogrammetry the data source of choice, if it can be shown to be of 
sufficient accuracy.  

This study builds on the promising outcomes of studies from Gaulton & Malthus (2010), 
Bonnet et al. (2015) and White et al. (2018), which showed great potential of the use of LiDAR 
data for detecting canopy openings, and Chen et al. (2017), whose novel DAP standalone 
approach produced satisfying results for measuring vegetation height. Pioneering in comparing 
ALS and DAP and a combination of the two, and their applicability in the detection of canopy 
openings in the boreal forest of northern Alberta, Chen et al.’s study’s results will be valuable 
input for quantifying the human impact for purposes like monitoring the success of 
governmental habitat protection plans. The Provincial Woodland Caribou Range Plan 
(PWCRP) specifically includes monitoring of landscape condition, characterized by  

1) the area of anthropogenic disturbance features,  

2) the area of disturbed and undisturbed habitat and  

3) the amount and density of linear features (Alberta Government, 2017). 

The new evaluation of the two technologies is necessary because this study’s area of interest 
(AoI) is characterized by a higher diversity of tree phenology –  especially height and density –  
than most regions of interest in previous studies. Tree height in temperate and rain forests is 
usually homogenous, whereas the boreal forest of northern Alberta exhibits a wide range of 
tree height, with small trees growing in the bogs and fens of the lowlands, and very tall pine 
and birch trees in the uplands (Lovitt et al., 2017).  

The detailed comparison of canopy opening detection via ALS versus DAP technologies, as 
undertaken in this study, can be broken down into 3 technological and 1 ecological research 
questions:  

1) What are the accuracies for detecting structural openings in the canopy cover of the 
boreal forest ecosystem using ALS and DAP technologies? 

2) Is it possible to produce a reliable CHM using solely DAP data? 
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3) Are LiDAR and DAP appropriate technologies to quantify the human impact in the 
study area and naturally occurring canopy openings? 

4) Are LiDAR and DAP appropriate means to help execute the Provincial Woodland 
Caribou Range Plan? 

Chapter 2 identifies existing research projects and resources in the context of the ecological 
significance of openings in forests, the technological qualities of LiDAR and DAP, and point 
cloud based opening detection. The study area with its meteorological, biological and geological 
features, and the local disturbance regime, as well as relevant definitions are discussed in 
chapter 3. Data and methods used in this study are presented in chapters 4 and 5, respectively. 
The results and their critical discussion can be found in chapters 6 and 7. Chapter 8 offers an 
outlook in the future research of ecological and technical challenges identified in this study.  
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2 Literature Review 
The literature on canopy openings is diverse and provides a variety of approaches to assessing 
canopy structure. There does not seem to be a uniform definition of what constitutes a “canopy 
gap”, assuming every ecosystem is unique in its structure. This chapter sums up the most 
important approaches to provide an overview of existing solutions when deciding on the 
definition of canopy openings in this study’s context.   

2.1 Canopy Openings and Forest Dynamics 
The ecological importance of canopy openings to the forest ecosystem has been well recognized 
and backed by extensive research conducted on the topic since the end of the 19th century 
(Mccarthy, 2001; Muscolo et al., 2014). Numerous studies have been published on canopy 
openings in tropical rain forests (Brokaw, 1985; Brokaw & Scheiner, 1989; Lawton & Putz, 
1988; Schnitzer & Carson, 2001), coastal temperate rainforests (Lertzman et al., 1996; White 
et al., 2018), temperate hardwood forests (Busing & White, 1997; Canham et al., 1990; Poage 
& Peart, 1993; Runkle, 1982, 1992; Stewart et al., 1991; Zieli et al., 2018) and temperate 
coniferous forests (Coates, 2000; Gray & Spies, 1996, 1997; Stan & Daniels, 2018). Kneeshaw 
(1998) reported a lack of research conducted on boreal forests in North America which he 
concluded to be due to the domination of large scale disturbances such as extensive fires. 
McCarthy (2001) adds insects and wind disturbances as reasons for the lack of attention 
concerning openings in boreal forests.  

While some studies have recently focused on the boreal ecosystem of the northern 
United States and Canada (Cumming et al., 2000; Kneeshaw & Bergeron, 1998; Vepakomma 
et al., 2010, 2011, 2012) as well as of Europe (Caron et al., 2009; Dai, 1996; Hörnberg et al., 
2011; Leemans, 1991) and Japan (Kubota, 1995), the examination of canopy openings in the 
boreal forest ecosystem is still underrepresented in comparison to the aforementioned 
ecosystems (Mccarthy, 2001). 

2.1.1 Definitions of Canopy Openings 
It is crucial to consider the different aspects that characterize the tropical, the temperate and 
the boreal forest ecosystems when defining a canopy opening. However, the literature at hand 
focusing on the tropical and the temperate zone, though not representing the ecosystem of this 
study, aids at acquiring a first overview of definitions, causes and effects of canopy openings.  

Runkle defined canopy openings in temperate hardwood forests in 1982. He 
differentiated between two types, the first being the canopy opening itself, defined as the “land 
surface directly under the canopy opening” and the second being the expanded opening which 
he defined as “the canopy opening and plus the adjacent area extending to the bases of canopy 
trees surrounding the canopy opening” (Runkle 1982, p. 1534). The concept of the expanded 
opening (fig. 2) was useful when considering indirect effects of openings in the forest canopy, 
such as changes in the supply of solar radiation reaching the ground in the northern adjacent 
areas located under closed canopy (Runkle, 1982).  
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Figure 2 Opening definitions for canopy and extended openings (Runkle, 1992). 

A definition for treefall openings in the tropical forest was offered by Brokaw (1982): a 
“gap is a “hole” in the forest extending through all levels down to an average height of two m 
above ground” (Brokaw 1982, p. 159). He defines the walls of the opening as irregular in profile 
but, simplifying reality for a more workable definition, he makes the assumption that they are 
vertical, and accepts singular, isolated small trees and branches as part of an opening (Brokaw, 
1982). While this definition seems quite logical, there are different opinions regarding some of 
the central opening characteristics, the most prominent ones being minimum and maximum 
size.  

The minimum size of a disturbance to be identified in the literature as an opening 
ranges from 4 m2 (Lawton & Putz, 1988) to 25 m2 (Fox et al., 2000; Runkle, 1992; Schnitzer 
& Carson, 2001) or can be set indirectly, e.g. as one half canopy tree (Christensen & Franklin, 
1987; Runkle, 1992). Openings are, by definition, localized and discrete and “are not part of an 
“open-ended” system such as a wetland or a large burned area” (White et al. 2018, p. 1). One 
attempt to identify the maximum size of an opening in the forest to qualify as a canopy opening 
was undertaken by Christensen & Franklin (1987). Here, the maximum size is the spatial 
extend of the area affected by ten dead trees. Fox et al. (2000) and Stewart et al. (1991) state 
that an opening can reach a size of 0.1 ha, Schnitzer and Carson (2001) defined their openings 
with a maximum size of 75 m2. Finally, Runkle (1992) defines the maximum size as the opening 
created by the death of ten canopy trees, or when the canopy height to opening diameter ratio 
reaches 1.0, “whichever is larger for the forest studied” (Runkle 1992, p. 16). 

Openings can be rapidly closed by advance regeneration, adjacent vegetation in the 
initial growth stages or radial expansion of the edge tree crowns (Vepakomma et al., 2012). 
Thus, it is important to identify, besides minimum and maximum horizontal extent on the 
ground, a height limit of regrowth vegetation within an opening after the disturbance (regrowth 
vegetation). Studies agree that openings are areas within the forest that are either devoid of 
trees or “where the canopy (leaf height of tallest stems) is noticeably lower than in adjacent 
areas” (Runkle 1992, p. 2), and that an opening is a site that is lacking a competitively 
dominant canopy tree (Runkle, 1992). While there are various-fixed value approaches to 
identifying openings, e.g. 15 m in a beech forest in Japan (Nakashizuka, 1987) or 15-20 m in a 
temperate coastal rain forest in Chile (Veblen, 1985), Runkle (1992) suggests the use of a 
variable approach: the canopy opening still qualifies as an opening if the regrowth vegetation 
is low enough to “expose to the sky the crowns of stems that otherwise would be in the 
understory. Gaps close when replacement stems reach a height indistinguishable from that of 
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the surrounding closed forest” (Runkle 1992, p. 16). Schnitzer and Carson (2001, p. 914) 
consider the temporal consistency in their approach: an opening is an area that had a “sustained 
canopy height of at least 20 m for two consecutive years and then dropped to a height of 5 m 
or less during the following year” (Lawton and Putz (1988) accepted areas with trees with an 
opening canopy height of no more than 50% of the surrounding canopy height. The last three 
approaches illustrate the importance of keeping the site-specific characteristics of the AoI in 
mind when defining a vertical limit for the regrowth vegetation. 

2.1.2 Opening Formation 
Canopy opening openings can be the effects of various disturbances. In general, two types of 
disturbances can be distinguished based on their source: 

1) ephemeral openings: caused by exogenous disturbances (both natural and 
anthropogenic) 

2) persistent openings: caused by edaphic or topographic conditions, such as streams or 
rock outcroppings (Lertzman et al., 1996).  

In the tropical forests, while there are occasional severe disturbances such as earth 
quakes, mud slides, volcanic eruptions or hurricanes, chronic treefall and limb fall are the most 
common forms of natural disturbances (Lawton & Putz, 1988; Veblen, 1985). In boreal forest 
ecosystems, large scale disturbances do exist, such as fires (Burton et al., 2008; Caron et al., 
2009; Vepakomma et al., 2010), hurricanes and windstorms (Poage & Peart, 1993; Runkle, 
1982; Stewart et al., 1991), droughts (Stewart et al., 1991), and large scale insect infestation 
(Barrette et al., 2017; Safranyik et al., 2010; Vepakomma et al., 2010). However, small scale 
disturbances, such as wind throw, (Bonnet et al., 2015), tree or branch falls (Ferreira De Lima, 
2005; Fox et al., 2000) and snow destruction (Caron et al., 2009), natural mortality and heart 
rot (Caron et al., 2009), are the most common causes for canopy openings in boreal forests 
(Feldmann et al., 2018).  

In addition to natural opening formation, evidence of anthropogenic disturbances is 
omnipresent and affect forests in every ecosystem. Silvicultural practices and wildlife 
management practices (Fox et al., 2000), like thinning (Bonnet et al., 2015), harvestings and 
other logging activities (Vehmas et al., 2011), as well as clear cuts for roads and other 
infrastructure (Fox et al., 2000) can be found in almost every forest in the world, all of which 
create openings in the forest canopy an thereby contribute to opening formation. A particular 
form of anthropogenic disturbance in the study site are seismic lines, pipelines, and gas wells 
(Hebblewhite, 2017; Lovitt et al., 2018; Rahman et al., 2017) and shall be discussed further in 
chapter 2.3.1.  

2.1.3 Forest Dynamics and Opening Recovery 
Given that most forests will produce regrowth in openings when left long enough, canopy 
openings created by small scale disturbances like branch or treefall play a vital factor  

1) enabling the process of regenerating forest vegetation and  

2) maintaining a meaningful biodiversity within the forest ecosystem (Feldmann et al., 
2018; Lawton & Putz, 1988; Nagel et al., 2010; Runkle, 1982; Whitmore, 1989).  



2 Literature Review 

	
8 

Openings in the canopy are thus a crucial factor in the natural forest recovery cycle (fig. 
3) (Bartels et al., 2016). Whitmore (1989) calls them the most important part of this cyclic 
successional pathway. Canopy openings assume this role mainly by influencing and changing 
the amount of solar radiation and thereby the supply of photosynthetically active radiation 
(PAR) which reaches the ground and understory vegetation (Canham et al., 1990; Dai, 1996; 
Nagel et al., 2010; Whitmore, 1989). For example, in a study in 1996, 9% of above canopy PAR 
reached the ground under the closed canopy cover, while 25% of above canopy PAR reached 
the ground within the examined openings. In addition, the growth rate was 23.9% higher within 
openings compared to areas beneath the canopy cover (Dai, 1996). 

	
Figure 3 Schematic stages of early to mature forest stand development following major disturbances (adopted from 
Oliver and Larson, 1996). The species composition, height structure and time elapsed since the disturbance at each 
stage vary with type of disturbance, dominant species an site conditions (Bartels et al., 2016). 

The species composition of regrowth vegetation within openings depends, for a large 
part, on the size of the disturbance (Lawton & Putz, 1988; Nagel et al., 2010; Stewart et al., 
1991). Small openings are usually characterized by a continuously limited supply of PAR. This 
is especially true in high latitude forest stands where low sun angles throughout the day lead 
to little PAR reaching the ground (Barrette et al., 2017; Coates, 2000). Not only receive very 
small openings little light, but they are also usually filled quickly by the lateral expansion and 
ingrowth of adjacent canopy trees. Even slightly larger openings tend to stay shady. Here, 
regrowth consists mostly of shade tolerant advance vegetation, seedlings that were germinated 
under the closed forest canopy before the formation of the opening and commence their height 
growth when a canopy opening occurs (Whitmore, 1989).  

In openings, large enough to allow for a significant increase in the supply of PAR, more 
light-demanding species can germinate after an opening has been formed (stand initiation 
phase, fig. 3). Those seedlings cannot be recruited prior to a canopy opening and fully depend 
on the formation of a large canopy opening (Whitmore, 1989). Whitmore (1989) therefore 
developed the autecological differentiation  of opening regrowth vegetation into pioneer and 
non-pioneer (climax) vegetation. While pioneer vegetation requires direct sunlight at least part 
of the day and can only be germinated after the formation of a large canopy opening, climax 
or non-pioneer vegetation is able to germinate under a closed canopy cover and its juveniles 



2 Literature Review 
	

9 

can survive in a shady environment (such as created by pioneer vegetation) for some years 
(Whitmore, 1989). 

While radial expansion of existing trees plays a limited role in the closure of larger 
openings, the recruitment of new seedlings is the primary process of opening closure (Leemans, 
1991; Poage & Peart, 1993; Runkle, 1982). By facilitating the regrowth and recruitment of 
young seedlings and saplings into the existing, possibly quite old or mature forest stand, 
openings facilitate for rejuvenation, adding to the heterogeneity  and modifying the structure 
of the average forest ecosystem (Feldmann et al., 2018; Stan & Daniels, 2018; Stewart et al., 
1991). And while openings are not essential for the recruitment of shade-tolerant tree species, 
they are necessary for the formation of secondary canopy layers, which is one criterion for the 
transformation from mature forests to old-growth forests (Gray & Spies, 1996). 

There are several lines of evidence indicating that opening size is one of the most 
important factors influencing regrowth, leading some researchers to making out opening size to 
be the sole factor. (Brokaw & Scheiner, 1989; Lawton & Putz, 1988). However, while the 
concept of opening size influencing sunlight supply and thereby determining the species 
composition by allowing light-demanding species to grow in larger openings and shadow-
tolerant plants in smaller openings, seems to be clear and intuitively correct, there are more 
factors than solely the spatial extent of the canopy opening that influence the composition and 
spatial distribution of regrowth species. Staying close to the topic of changes in the supply of 
solar radiation in openings, it should be stated that instead of opening size, one should consider 
opening geometry. Opening aperture and ratio of opening diameter to height result in an 
increase in sunlight with increasing vertical distance from the center of the opening and 
significant variations in the horizontal distribution of sunlight within the opening (Poage & 
Peart, 1993). Depending on the geographical location (and thereby sun path and the incidence 
angle of solar radiation), opening geometry might have more consequential impacts on opening 
regrowth than opening size (Canham et al., 1990; Coates, 2000; Gray & Spies, 1996). Opening 
geometry is especially important in the boreal forest ecosystem. Given the low sun path, 
openings are often too small for sunlight to reach the ground in the opening (Leemans, 1991). 
This results in modifications in the regeneration process: in northern boreal forests, the 
regeneration process is dominated by growth of advance vegetation of shade tolerant species. 
To a much lesser extent, light demanding individuals are established (Barrette et al., 2017). 
Besides opening size and opening geometry, there are, however, multiple other factors that 
affect the temporal and spatial variability in seedling recruitment. Given that openings do not 
show laboratory conditions for colonization, regrowth is affected by the presence or absence of 
woody debris, existing vegetation, nurse logs and disturbed mineral soil (Lawton & Putz, 1988), 
environmental heterogeneity, understory plants (Stewart et al., 1991), management history 
(Feldmann et al., 2018), resilience to shadow in different life stages (Nagel et al., 2010), presence 
of seed consumers and dispersers, (micro)climatic variability (Coates, 2000), the length of the 
growing season (Gray & Spies, 1996), disturbance history (Stan & Daniels, 2018), existing 
vegetation influencing the quality of radiation penetrating the canopy (Dai, 1996), and 
substrate composition (Duncan et al., 1998).  

2.1.4 Enhanced Biodiversity within Openings  
Several studies found significantly elevated species density and richness/biodiversity within 
openings, compared to the closed-canopy forest stand (Busing & White, 1997; Schnitzer & 



2 Literature Review 

	
10 

Carson, 2001). Openings, offering ideal conditions for plant regrowth (Muscolo et al., 2014),  
change the physical makeup of existing forest stands and thereby create and alter plant and 
wildlife habitats (Abdullah et al., 2018), increasing biodiversity (Fox et al., 2000). However, 
some studies suggest that the greater biodiversity found within openings might simply be due 
to a higher density of trees and other species growing within an opening in the initial stages of 
regrowth. This higher biodiversity is thus only a temporary effect of increased seedling 
recruitment and tree establishment, which can lead to higher species richness, depending on 
the pool of propagules of the species (Busing & White, 1997). This is then subject to the natural 
following thinning progress, caused, for example, by dry spells, competition and overgrowth by 
herbs, mosses and grasses, destruction by falling debris of disease (Canham et al., 1990; 
Leemans, 1991; Nagel et al., 2010; Schnitzer & Carson, 2001). Leemans (1991) found a high 
mortality rate during the first one to three years of regeneration. After an observation period 
of four years, only 0.6% of the initial regrowth individuals were still alive.  

Openings can only regenerate the forest and maintain its ecosystem’s biodiversity if the 
disturbances are small in scale and if the openings have enough time to produce regrowth 
without any renewed disturbance. Various studies in Fennoscandia have shown that 
disturbances, that are too numerous or not left alone for long enough, result in a decline in 
biodiversity and an increase in the number of endangered species (Caron et al., 2009). The only 
way to counteract such developments are the restriction of anthropogenic disturbances or the 
governmental protection of ecosystems and active treatment of disturbed sites to facilitate 
plant regrowth (Caron et al., 2009; Hebblewhite, 2017).  

2.2 Technologies 
The two main technologies compared in this study are ALS, applying one form of LiDAR, and 
photogrammetry. The following section provides insight into both technologies. Shortcomings 
and advantages will be presented.   

2.2.1 LiDAR 
LiDAR has received scientific attention for more than 15 years (Kukkonen et al., 2017). It is 
an active remote sensing technology, which can be mounted on handheld devices, drones and 
airplanes (Lefsky et al., 2002) or satellites, e.g. the Global Ecosystems Dynamics Investigation 
(GEDI) (Blumberg, 2018).  

The sensor, which emits wavelengths of 900 nm –  1064 nm, records the return time of 
the emitted short-duration laser light pulse after reflecting off an object. The precise timing of 
the round-trip return time allows to calculate the distance (range) between the sensor and the 
detected object (Lefsky et al., 2001; Zolkos et al., 2013). In addition, LiDAR pulses can 
penetrate certain media, such as leaves in forest canopies. LiDAR can thus be used to digitize 
either a discrete combination of first, last and intermediate returns (fig. 4) (Næsset, 2015), or 
to present the returned energy in a quasi-continuous waveform, referred to as full-waveform 
LiDAR (Zolkos et al., 2013).  
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Figure 4 Laser pulses and discrete returns (Isenburg, 2016). 

These abilities are utilized to produce high-resolution (sub-metre accuracy) 
measurements of surface elevations, which include vegetation, sea surface, bare soil and 
anthropogenic structures such as buildings and roads, based on x, y, z coordinated 
measurements (Bartels et al., 2016; Van Rensen et al., 2015; White et al., 2018). Previous 
studies have shown that LiDAR is the primary source of remotely sensed information for the 
use of deriving terrestrial topography (Næsset, 2015) and an excellent tool to measure forest 
structure characteristics accurately in a variety of forest ecosystems (Asner et al., 2013; Erdody 
& Moskal, 2010; Van Rensen et al., 2015; Vehmas et al., 2011; Vepakomma et al., 2008; White 
et al., 2018; Zhang, 2008). CHM derivation is facilitated by LiDAR providing both data for the 
digital surface model (DSM) as well as the digital terrain model (DTM). By subtracting the 
DTM from the DSM, a normalized CHM is produced.  

2.2.2 DAP 
In contrast to the active remote sensing technology LiDAR, DAP is a passive remote-sensing 
technology. First used in the 1940s with manual matching techniques, it has since developed 
into a well-established technology used to examine forest structure, mainly due to the straight 
forward fashion in which 3D images can be derived from stereo photogrammetry (Holopainen 
et al., 2015; White et al., 2013). Photogrammetry is based on the principle of parallax (fig. 5), 
which describes the apparent change in position of an object resulting from a change in viewing 
perspective (Lillesand et al. 2015, 177). If an object is viewed or imaged from two different 
positions, stereophotogrammetry enables the computation of the object’s position relative to a 
reference datum (e.g. sea level, geoid, ellipsoid…) depending on the parallax (Holopainen et al., 
2015; White et al., 2013).  
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Figure 5 Parallax displacements on overlapping vertical photographs. A viewing line is constructed from the camera 
at each position to the common point in the image used for the image matching process. Triangulating the 
intersection of the two rays produces the 3D position of the point (Lillesand et al. 2015, p. 178) 

Stereophotogrammetry uses two images for the matching process, but multi- image 
matching is required to produce the accuracies and details needed for reliable DSMs. Since the 
density of the point cloud increases with the amount of match points found in the matching 
process, an enormous improvement in the production of photogrammetry point clouds has been 
achieved by the development of affordable UAV and digital aerial cameras, which enable an 
easy acquisition of a large amount of high-resolution images needed for automated multi-view 
matching rather than manual stereo-matching (Holopainen et al., 2015). While the digital 
image resolution is defined as the ground sampling distance (GSD), which depends mainly on 
the flying height and technical specifications of the camera (Holopainen et al., 2015), the 
evolution of computing technology has led to more complex image matching algorithms, which 
further improve overall point-cloud quality (Remondino et al., 2014; White et al., 2013). The 
lack of ground returns under a canopy cover must be considered in the derivation of the CHM 
from DAP data (e.g. by using a pre-existing DTM).  
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3 Study Area 
The area of interest (AoI) Kirby South is located in northeastern Alberta, Canada (fig. 6). In 
the following chapter, the AoI’s physical makeup shall be described, as well as its disturbance 
regime. Further, definitions specifically applicable for this study and AoI will be presented.  
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Figure 6 Overview map of the Area of Interest. 
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3.1 Climate 
According to the effective climate system classification by Köppen, the climate in the AoI can 
be characterized by the class Dfb (Hendl & Liedtke 1997, 404). This class describes the Boreal 
Snow Climate, fully humid, with lower changes in the annual precipitation than warm 
temperate climates. The average temperature of the coldest month is below -3°C and the 
average temperature of the warmest month is above 10°C (Kottek et al., 2006). The climograph 
for Cold Lake, which hosts the closest weather station with publicly available data (118 km 
SSE of Kirby Lake), shows these criteria (fig. 7). With mean summer temperatures exceeding 
15°C in July and August, mean winter temperatures dropping below -10°C in December, 
January and February, and an annual precipitation amplitude of less than 70 mm, Cold Lake 
is a good example of the fully humid Boreal Snow Climate. This subarctic climate is the largest 
of all Canadian climate zones and is characterized by cold extremes in the winter with 
temperatures below -40°- -50°C, caused and influenced by cold, dry Arctic air. The higher 
precipitation occurring during the summer months can is attributed to humid Pacific air 
dominating the weather patterns (Bone 2011, 56).  

	
Figure 7 Climograph of Cold Lake, AB (Government of Canada, 2018), showing patterns typical of the humid boreal 
snow climate: cold extremes in the winter (-40 –  -50°C) and higher precipitation during the summer months. 

3.2 Flora and Fauna 
The increase in temperatures and precipitation during the summer months provide adequate 
growing conditions for coniferous and mixedwood forest stands (Downing & Pettapiece, 2006). 
Given the relatively cool climate with summer temperatures around 15°C, the evaporation rate 
is kept relatively low, which promotes tree growth despite low precipitation, making black and 
white spruce (Picea), firs (Abies), aspen (Populus), and pines (Pinus) the dominating species 
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in the Canadian boreal forest. However, deciduous trees like birch, poplar, tamarack, aspen 
and larch can be found as well, especially along the southern edge of the boreal forest and as 
seral vegetation following a forest fire (Bone 2011, 56; Hess & Tasa, 2014, 364).  

Due to adaption strategies, vegetation in the boreal coniferous forest can withstand 
minimum temperatures of -60°C. The coniferous trees tend to be tall, to receive more sunlight, 
and thin to avoid breakage under large amounts of snow (Hardy, 1967). In addition, the study 
area presents a remarkable amount of coarse woody debris within tree stands (fig. 8). 

	
Figure 8 Coarse woody debris in the study area's forest. 

Due to the tall growth structure and insufficient light availability, undergrowth is 
generally not pronounced underneath the closed canopy, except for a patchy layer of deciduous 
shrubs growing in profusion (Hess & Tasa, 2014), and a variety of herbaceous species or 
feathermosses and horsetails under deciduous and mixedwood stands (Downing & Pettapiece, 
2006). More commonly, the ground is covered with mosses and lichens, and a decaying layer 
of needles overall (Hardy, 1967; Hess & Tasa, 2014). Over half of the Central Mixedwood 
Natural Subregion is characterized by low-lying wet, poorly drained fens and bogs, which affect 
large patches of the study area. The high moisture content makes mosses the dominant 
understory vegetation in these areas. Where tall growth trees are missing due to natural or 
anthropogenic disturbance or excessive soil moisture content, bearberry, blueberry, green alder, 
prickly rose, cloud berry, raspberry and Labrador tea occur and form a thick understory 
vegetation (fig. 9). These forms of understory are usually associated with coarse glacio-fluval 
or eolian deposits facilitating rapid drainage. The most common wetland type are species-poor 
black spruce fens with Labrador tea, peat moss and feathermosses (Downing & Pettapiece, 
2006).  
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Figure 9 From left to right: raspberries, blueberries and red currants as found in the study area. 

Due to slow plant growth, a relatively homogenous, species poor vegetation cover and 
harsh winter temperatures, the fauna’s biodiversity is limited in the boreal forest and typically 
represented by mammals previously hunted for fur, like wolves and beavers, birds, and an 
abundancy of insects during the summer months (Hess & Tasa, 2014). During in-situ sampling, 
the study site proved to be home to black bears, caribou and wolverines.  

3.3 Geology and Soils 
The study site, positioned centrally in the interior plains, represents the Central Mixedwood 
Natural Subregion by comprising both undulating plains and some hummocky uplands. The 
most common underlying bedrock consists of Cretaceous shales and includes some sandstones 
and siltstones. In the well-drained hummocky areas of the uplands, one third of the surficial 
material is made of fine textured glaciolacustrine materials, one third by coarse glacio-fluvial 
and eolian sands, and another third by coarse to fine textured till. The wetlands are underlain 
by organic deposits (Downing & Pettapiece, 2006). 

The Canadian boreal forest grows mainly on podzolic soils (Bone, 2011; Hess & Tasa, 
2014). This soil requires acidic plant litter and a nutrient poor vegetation cover. It is thus 
commonly tied to the circumpolar boreal forest, where the needle litter leads to an abundance 
of acids and an adequate supply of precipitation makes for very effective leaching (Hardy, 1967; 
Hess & Tasa, 2014). Another favoring condition is the previous glacial detraction which 
distributed an abundance of broken rock debris on the surface. These rocks are of crystalline 
nature, rich in quartz and aluminum silicates and poor in alkaline mineral cations which would 
counteract the acidity and supply nutrients to the vegetation cover (Hardy, 1967; Hess & Tasa, 
2014). Humus production is retarded due to a lack of productive microorganisms, which allows 
for effective leaching of cations, iron oxides, aluminum oxides and colloidal clays during the 
summer months (Hess & Tasa, 2014). 

The resulting soils are shallow and acidic. They are characterized by an A horizon that 
is of a silty or sandy texture and leached to an ashy, light gray color, while the B horizon 
receives the leached iron oxides and clay minerals which give him a darker color (fig. 10). 
Podzols are characterized by low fertility and a crumbly structure susceptible to erosion (Hess 
& Tasa, 2014).  
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Figure 10 Outcrop found in the study area, depicting a shallow, silty and grey A horizon, followed by a darker B 
horizon. 

Due to pronounced winters freezing the subsoil temporarily or permanently (Bone, 
2011) and glacial derangement during the recent Pleistocene ice age, the boreal forest shows 
poor deep drainage. Thus, bogs and fens are frequent and the ground very moist to spongy in 
the summer months after precipitation events (Hess & Tasa, 2014). The most common soils 
underlying bogs and fens are organic soils, in varying stages of decomposition and with different 
amounts of resistant fibres in percent by volume (Downing & Pettapiece, 2006). 

3.4 Disturbance Regime 
Disturbance regimes determine the structure of forests in multiple ways. The following sections 
explain the distinct disturbance regime in the AoI. Anthropogenic disturbance in the AoI is of 
special importance.  

3.4.1 Anthropogenic Disturbance 
Oil exploration in northern Alberta dates back to the 19th century. The most decisive oil 
discovery, however, took place in February of 1947, when Imperial Oil discovered a large 
reservoir of oil in Leduc, just south of Edmonton. The drilling of the first Leduc oil well, called 
Imperial Leduc Number One, arguably turned Alberta into the oil province it is known as 
today. Within just one year, large-scale exploration for petroleum picked up, with 131 more oil 
wells taking up operation in Leduc and 888 wells in Redwater. The Pembina field supplied 
more than one thousand wells (Hardy, 1967). Once exploration showed that much of the 
province’s ground was underlain by vast petroleum deposits, it was only a matter of time until 
oil was exploited in the study area. Cenovus Energy started the Christina Lake project in 2000, 
located 35 km from the study area. Using steam-assisted gravity drainage (SAGD) technology 
to extract bitumen in situ from 375 m underground. Christina Lake currently produces 210,000 
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barrels of oil per day and further expansions have been approved, which will add another 50,000 
barrels of oil per day starting in the second half of 2019 (Cenovus 2018).  

Seismic lines are a result of systematic scanning for oil (Downing & Pettapiece, 2006). To 
detect underground bitumen, corridors are cut into the forest in a grid-like pattern, creating so 
called “cut lines”. Depending on the depth of the underground oil layer, seismic lines are 
typically between 100 and 1000 m apart, with larger distances if the oil is located deeper 
underground. The width of the lines usually depends on the machinery used for the drilling of 
shot holes. In treed areas such as the study area, cut lines are typically created by heavy 
bulldozers. They present a width of up to eight metres and follow a meandering course 
(Severson-Baker, 2004). The so-called “low impact seismic lines” (LIS), which are as little as 
ca. 2 m wide (EMR, 2006), are the minority of the seismic lines found in the study area. Most 
lines (except wide transportation lines) in the study area are approximately 5 m wide. Once 
the seismic line is completed, geophones are laid out along the line to record the sound waves. 
These are created in two ways: 

1) Explosives placed in holes drilled in the ground or 

2) Vibrations created by heavy plates on the ground.  

Before explosives can be used, holes (so called shot holes) up to 20 m deep must be drilled 
in the ground until the surveyors find a layer of wet shale or mud which transports the sound 
waves better than sand or silt. These holes are created between 20 and 120 m apart. The 
explosives are then placed at the bottom of the holes and detonated. Alternatively, and 
especially on flat terrain, truck mounted surface vibrators can be used (“vibroseis”). The 
soundwaves then propagate through the soil, passing through various soil compositions and 
rock formations at different speeds, until they are reflected by a formation. This reflection is 
then recorded by geophones, receivers strategically placed along the seismic lines. The signals 
are transmitted to a computer which transforms them into information on the depth and type 
of the rock formations (Severson-Baker, 2004).   

Usually, a 2-dimensional seismic assessment is conducted first. Should this initial 
exploration produce promising results, the receiver lines (consisting of geophones connected to 
each other) and shot lines may be laid out in a perpendicular fashion, resulting in a 3-
dimensional image of the underground soil formations (Riva et al., 2018; Severson-Baker, 2004). 

In recent years, some of these lines have been treated to facilitate regrowth of vegetation 
by planting seedlings, for example by erecting mounds of roughly 1 m3 on which to plant trees 
to avoid their roots to grow in the high ground water. However, if left untreated, seismic lines 
in the study area present mostly grass as the dominant regrowth vegetation, mixed with an 
assortment of berries, Labrador tea and grasses (fig. 11, lower left).  
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Figure 11 Stages of regrowth vegetation on seismic lines in the study area. Upper left: grass as the sole regrowth 
vegetation. Lower left: medium density regrowth vegetation with shrubs, a thick layer or Labrador tea, and young 
trees. Right: Very dense regrowth vegetation. 

Dirt roads, camps for oil workers, and well sites are not treated with the purpose of 
enhancing regrowth vegetation and thereby do not show any vegetation growth at all. Given 
that the emphasis of this study is the examination of the human impact on the boreal 
ecosystem, these disturbances were included in the definition of openings (fig. 12). 

	
Figure 12 Left: Clearing of a well site. Right: Dirt road and adjacent clearing with small regrowth vegetation (grasses 
and flowers). 

3.4.2 Natural Disturbance  
Out of all natural disturbances able to cause the opening of a canopy opening, forest 

fires and insect infestations are among the most prolific (Timoney, 2003). Forest fires are an 
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important part of the natural forest stand development cycle (fig. 3). Further, insect 
infestations and limb fall can cause openings in the canopy cover. Increases in frequency, 
duration and/or severity of drought during the summer months and climate change associated 
heat stress puts the vegetation of the boreal forest under immense added physiological pressure 
and raises vulnerability for disturbances like insect infestations. Altered structure could also 
lead to more frequent natural tree death and snow destruction (Allen et al., 2010).  

Due to the high moisture content in soil and vegetation, many, especially deciduous 
trees like birches and poplars, were discovered to be rotten inside even when they were showing 
a seemingly healthy canopy crown. On more than one occasion on a windy day during the field 
work, birch trees of 30 m in height broke in half, leaving a new opening in the canopy cover. 
Figure 13 illustrates the heart rot that had befallen a large birch tree in the AoI. Mature trees 
could be felled by the force of one person due to the weak physiological structure of the trees.  

	
Figure 13 Mature birch trees could be broken easily by the force of one person. This demonstrates the heart rot and 
thus vulnerability for natural canopy openings at some of the tree stands AoI. 

3.5 Definitions of Forest and Openings 
Forests consist of trees growing close together so that their individual canopies generally 
overlap and create one interlaced closed canopy cover. The woodlands found in the bogs and 
fens of the AoI, while tree dominated, constitute plant associations without a closed canopy. 
Consequently, their undergrowth is not characterized by a lack of sunlight (Hess & Tasa, 2014). 
Given the diverse nature of the study site, which includes coniferous and deciduous trees as 
well as upland and wetland vegetation differing significantly in height and tree density, this 
study’s definition of forest includes both low tree density wetlands characterized by small and 
sparse vegetation growth, as well as high tree density uplands with their typical dense birch, 
poplar and spruce tree stands. Further, there will be no differentiation made between single-
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trunk trees and multiple-stem shrubs. The sole determining factor of forest classification will 
be vegetation height.  

Chapter 2.1.1 presents the various definitions presented by scientific literature of 
functional openings, i.e. openings with the described ecological impacts on the local ecosystem 
and including vegetation forms like saplings up to 2 m. In contrast, this study aims at assessing 
the accuracies with which six different approaches detect structural openings in the AoI.  

Runkle (1992) acknowledges the existence of areas that are permanently free of trees 
due to edaphic factors such as soil, bedrock or biological conditions. These areas may resemble 
openings in their attributes like species composition, structure and biological function, but not 
in their generation or their ecological dynamics. For example, the lowlands’ understory, due to 
their low tree density, is not deprived of sunlight. One of the most prominent changes taking 
place after the opening of an opening, however, is the sudden increase in light supply on the 
ground. Given that the low-lying wetlands do not experience a stark, sudden change in light 
supply.  In this study, they will be regarded as structural openings, which are detectable by 
means of remote sensing. The definition of structural openings in this study considers the space 
between stems of a forest’s trees. Functional openings are considered as the ecological effects 
any form of opening in a forest canopy has on the local ecosystem and correspond roughly with 
Runkle’s (1992) concept of expanded opening. However, it is to be noted that even functional 
openings should not be defined by their size, shape or setting, but rather be viewed through 
the lens of the species that are affected by them.  

To identify openings in-situ, the following definition of opening was formed: structural 
openings in the canopy cover, which may vary in height and density, with no defined minimum 
or maximum extent, and a maximum height of regrowth vegetation that is 1.3 m or 25% of 
the surrounding maximum canopy height. The lack of a definition of minimum extent allows 
for the examination of ALS’ and DAP’s abilities to detect even very small openings in the 
canopy cover, though significant ecological impact such as tree regrowth is only to be expected 
in larger openings, starting at 50 m2 (Bonnet et al., 2015). No upper limit was determined for 
the spatial extent to include large-scale anthropogenic disturbances such as networks of seismic 
lines, roads and pipeline clearings, which are part of the AoI’s disturbance regime. The 
1.30 m/25 % height limit was chosen to include even small-growth established tree vegetation 
in the wetlands and will be further discussed in chapter 6.1.1.4.2.  
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4 Data 
Orthoshop Geomatics Ltd provided both the ALS and DAP data used in the study. The data 
was acquired by sensors mounted on a Cessna 210T during leaf-on (early May) and leaf-off 
(early August) seasons in 2017. Flying altitudes were approximately 850 m above ground and 
acquisition was timed in a fashion that aimed at minimizing negative effects of shadows and 
occlusions.  

4.1 Airborne Laser Scanning Data 
The ALS data used in this study was acquired in August 2017 using a Leica ALS70-CM sensor 
at a flying height of approximately 850 m above ground (table 1). The total amount of point 
records is 43,657,212.  Average point density is 40 points/m2 and point spacing was 0.15 m.
   
	
Table 1 ALS data acquisition parameters. 

Parameter Description 
Sensor Leica ALS70-CM 
Aircraft speed 130 knots 
Swath Width 550 m 
Maximum Scanning Angle 35° 
Beam divergence 0.2 mrad 
Wavelength 1064 
Flying altitude 850 m a.g.l. 
Pulse Repetition rate Max. 500 kHz 
Overlap 60 % 
Scan frequency 158 Hz 
Number of returns per pulse 2 
Point density 40 points/m2 

4.2 Photogrammetry Data and Multispectral Orthomosaics 
DAP data were acquired using a Leica RCD30 digital camera with forward motion 
compensation and an 83 mm lens. Maximum pixel resolution was 0.055 m. More than 5000 
photographs were generated on each of the two acquisition periods. The acquisition was 
conducted during diffuse light conditions to limit shadows in the area of interest to <20% 
(table 2). The data was subsequently processed into photogrammetric point clouds using Pix4D 
software and applying a minimum number of matches of 3, with a point density of > 270 
points/m2 and point spacing of 0.06 m. Additionally, multispectral (RGB+NIR) orthomosaics 
with a spatial resolution of 0.05 m were derived.  
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Table 2 DAP acquisition parameters. 

Parameter Description 
Sensor Leica RCD30 digital camera, 83 mm lens 
Flying altitude 850 m a.g.l. 
Spectral resolution R, G, B, NIR 
Maximum pixel resolution 0.055 m 
Along track overlap 80% 
Across track overlap 60% 
Image acquisition Leaf Off May 2017 
Image acquisition Lead On August 2017 
Point density 270 points/m2 
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5 Methods 
The following chapter provides an overview of the methods applied in this chapter. This 
includes the processing steps of 3D data, the field campaign and validation data design, as well 
as gap classification. 

5.1 Opening Detection 
This study aims at classifying structural openings. Openings are defined based on the vegetation 
height at a given point, rather than optical signals. The steps of this process are described in 
the following sections.  

5.1.1 3D Data Opening Detection  
For opening detection based on 3D data, as provided in the form of ALS and DAP point clouds, 
a CHM must be generated. CHMs are traditionally produced by simply subtracting the DTM 
from the DSM of a given area (White et al., 2018; fig. 14), which results in the normalization 
of the DTM.  

					 	
Figure 14 The three components required for the traditional derivation of a CHM (bottom) via subtraction of the 
DTM (middle) from the DSM (top). 
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In previous studies, the DTM used in combination with a DAP derived DSM (DSMDAP) 
was either generated from an ALS dataset (White et al., 2018) or from the Shuttle Radar 
Topography Mission (SRTM). Both technologies possess the ability to penetrate layers of 
foliage and classify ground returns reliably (Jet Propulsion Laboratory, 2018). On the other 
hand, DAP point clouds are based on aerial optical imagery and can only reach the ground, 
and classify it as such, where the ground is openly visible from the position of the sensor 
(Holopainen et al., 2015). Thus, applying an ALS derived DTM (DTMALS) when using a DAP 
derived DSM (DSMDAP) is appropriate (White et al., 2018).  

In this study, an exceptionally high density point cloud was generated from the DAP 
data. To test if a CHM derived from DAP data only (CHMDAP), e.g. by subtracting a DAP 
derived DTM (DTMDAP) can produce reliable outcomes regarding opening classification, 
CHMDAP was produced (DSMDAP –  DTMDAP) in addition to the traditional (White et al., 2018) 
CHMALS and CHMhybrid (fig. 15). As will be explained in chapter 6.1.1.2, a different approach 
regarding the derivation of CHMALS will make the step of manually producing a DSMALS 
superfluous. The grey visualization in figure 15 displays the traditional generation of a CHMALS, 
whereas the solid lines represent the process chain applied in this study. 
	

	
Figure 15 The derivation processes of the three CHMs produced in this study. 

It is important to note that the DSMDAP was derived from a DAP data set acquired in 
August 2017, representing the study site with a full canopy cover. This allowed for a high-
density point cloud showing the top of the canopy (LeafOn). The DTMDAP, on the other hand, 
was derived from a DAP point cloud acquired in May 2017, representing the forest after the 
deciduous trees had lost their leaves (LeafOff; Appendix A). This allowed for a better ground 
classification as the ground can be seen in more areas that would otherwise be covered by 
foliage.  

5.1.1.1 LAStools 
All three products (DTM, DSM and CHM) were derived from each data set (ALS and DAP) 
by a workflow using the LAStools tool set. LAStools is a collection of batchable, multicore 
command line tools developed by rapidlasso GmbH. Each tool was developed to execute one 
processing step (Isenburg, 2018). The steps in the processing chain were altered for the 
individual data sets to accommodate for the differences between ALS and DAP data (fig. 17 
and 20). The batch scripts can be found in Appendix B.  

5.1.1.2 Processing of ALS Data 
Before starting the processing chain, lasinfo determines if the ALS data set conforms to the 
LiDAR (LAS) 1.0 and 1.4 specifications (e.g. Coordinate Reference System (CRS) 
Representation, Offset to point data, point data record format, number of points per return) 
issued by the American Society for Photogrammetry and Remote Sensing (ASPRS). If the 
automatically generated validation report results in “PASS” (as opposed to “WARNING” or 
“FAIL”), the processing of the files can begin.  
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Various parameters must be set in the initial stage. They will be discussed in the context 
of the tools in which they are applied. 

1) Lastile: produces manageable tiles from the raw data set 

a. tile_size: 250 m. 

b. buffer: avoids fringe artifacts such as sliver triangles when triangulating between 
points (set to 10 m). 

2) lasnoise: classifies isolated points as noise 

a. step_xy and step_y were kept at default values. This step is complemented by 
manual classification later in the chain. 

3) Lasground_new: classifies ground points 

a. spike: threshold in meters vertically from the triangulated ground area at which 
spikes get removed (set to 0.3). 

b. wilderness: results in a step size of 3 meters to include smaller features on the 
ground. 

4) lasclassify: classifies vegetation, buildings etc.  

a. small_trees: recognizes overly small trees. 

b. small_buildings: recognizes overly small buildings (such as well site buildings 
and pipelines). 

5) lasheight: produces a normalized point cloud (height above ground) 

6) las2dem: produces DTM tiles 

a. keep_classification: triangulates points classified as ground (class 2) for DTM. 

b. first_only: keeps first returns only for DSM. 

c. use_tile_bb: eliminates buffer points. 

d. elevation: rasters the elevation of each pixel. 

7) lasthing: places uniform grid over data set and thins the data set for a given criterion  

a. highest: keeps highest value in each 0.2 x 0.2 m cell 

b. subcirc: thickens data set by replicating each point 8 times in a discrete circle 
with a radius of 0.1 around every original input point to simulate the laser beam 
width 

8) blast2dem: reads large ALS datasets, triangulates seamlessly and projects triangulation 
onto DEM. 

a. Drop_z_below: drops elevation value below (or above) a certain value (0) 

The result of the preprocessing batch depicted in the grey box in figure 17 are classified 3D 
point clouds (fig. 16). Their classifications include vegetation, ground, power lines and 
buildings. Noise (outliers in extreme heights) was not flagged as such but deleted from the data 
set.  
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Figure 16 Classified ALS point cloud from the AoI, depicting ground points (brown), ground triangulation (grey), 
vegetation (green), power lines (pink) and buildings (orange). 
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Figure 17 The processing chain for the ALS data set. The first batch of tools is applied to generate all three models 
(DTM, DSM and CHM). The DTM is the first product, which can be derive immediately after this first batch. The 
generation of the DSM requires a thinning of the point cloud prior to triangulating the first returns. The CHM is 
generated by producing several DSMs using points above five different minimal height above ground values (0m, 5 
m, 10 m, 15 m and 20 m). This way, needle shaped triangles to the ground and the omission of canopy cover points 
will be avoided in the triangulation process. The resulting components are subsequently merged in a different GIS 
software, e.g. ArcMAP.  

Traditionally, CHMs have been generated as shown in figure 14. To derive a DSM, first 
returns only are usually used to interpolate the surface of a DSM. This procedure is based on 
the assumption that first returns reflect the highest return point. Using a 2D Delaunay 
triangulation, the interpolating surface and the resulting Triangular Irregular Network (TIN) 
is rasterized onto a grid and stored as a DSM (Isenburg, 2016). However, Isenburg (2016) notes 
two critical drawbacks of the first return interpolation for DSM generation. 

1) Important details are missing when using first return information only (fig. 18). This 
especially affects off-nadir scan angles in traditional airborne surveys, where the laser 
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beam is interrupted by foliage and cannot reach lower lying, laterally offset points. 
These points would warrant a first return when hit from straight above, but off-nadir 
scan angles and clouds can hinder the laser beam propagation and lead to 
misclassifications (Isenburg, 2016). 

2) Needle shaped triangles (fig. 18) will result when every first return is considered in the 
triangulation. Some first returns might be situated underneath a layer of foliage that 
was not detected due to an off-nadir scan angle or through very small openings in the 
canopy surface.  

	

	
Figure 18 Needle shaped triangles resulting from interpolating all first returns. In addition, some parts of 
the canopy are missing because they were not recorded as first returns. The different colored dots identify 
first, intermediate and last returns (Isenburg, 2016). 

These drawbacks can be mitigated in the following way. After thinning the data set so 
that it only contains the highest point in each 0.2 x 0.2 m grid cell and adding several points 
around each input point to simulate the laser beam width using lasthin, five iterations of 
blast2dem were applied. The first one considering every return after the thinning step, the 
second one containing every point above a height of 5 m above the ground, the third one 
containing every point above a height of 10 m, then 15 m, and finally 20 m. This way, all the 
highest returns were considered and omissions of detail can be minimalized, and first returns 
which are situated underneath the canopy were not considered to be part of the canopy surface 
(Isenburg, 2016). The resulting DSMs or CHMs are expected to represent the canopy height as 
shown in fig. 19.  
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Figure 19 Spike free DSM. Expected result after assembling partial DSMs for different minimal heights, thus each 
considering the highest possible points in the DSM generation process (Isenburg, 2016). 

5.1.1.3 Processing of DAP Data 
Due to the nature of DAP data collection, which differs from the penetrating active remote 
sensing technique that is LiDAR, some steps in the processing chain had to be altered to fit 
the features of photogrammetric data.  

As can be seen in figure 20, which shows the general workflow for a DAP data set, two 
alterations had to be implemented in the ground classification. Since DAP data does not possess 
the ability to penetrate layers of biomass, and can thus only triangulate the points where the 
ground is bare and openly visible from above, two changes were made: 

1) lasthin was added before classifying the ground to thin the data set to only include the 
lowest points: 

a. step: set grid cell size to 0.5 x 0.5 m. 

b. lowest: thin dataset to include the lowest point in each grid cell. 

2) lasground_new: 

a. step: set to 10 m to allow for a coarse triangulation and interpolation over longer 
distances between the ground points. 

b. spike: threshold at which spikes get removed, set to 0.1. 

c. offset: maximal offset in meters up to which points above the current ground 
estimate get included, set to 0.1. 

d. bulge: specifies how far the current ground estimate may bulge upwards or 
downwards in order to include points above or below the current ground 
estimate, set to 0.1.  

e. extra_coarse: setting for very flat terrains.  
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Figure 20 Processing chain for DAP data. 

Another alteration should be implemented in the generation of the DSMDAP. A different 
set of challenges presents itself with DAP data. DAP technology is not able to penetrate the 
canopy cover and thus cannot produce first, intermediate and last returns, which would be 
used in the derivation of DSMs and DTMs. For the derivation of DSMDAP, which characterizes 
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the forest canopy and vegetation structure, the LeafOn data set is thinned to only contain the 
highest points in each 0.2 x 0.2 m grid cell and these points are consequently broadened into 
discs with a radius of 0.2 m. Subsequently, the data set is rasterized into a DSM. 

As noted earlier, another difference to the ALS process chain is the differentiation 
between two data sets (LeafOn and LeafOff) for the purposes of deriving the DSMDAP and the 
DTMDAP, respectively. By deriving the ground classification from the LeafOff data set, and the 
canopy classification from the LeafOn data set, the two will have to be combined later as shown 
in figure 15. By subtracting the DTM from the DSM, the CHMDAP is generated. This process 
is naturally based on meticulous georeferencing of both point clouds.  

5.1.1.4 Opening detection using Canopy Height Models  
Once the CHMs are retrieved from the data sets, further processing continues without 
differentiations made between the data sets and the different models. The two most common 
approaches for deriving openings in CHMs (Gaulton & Malthus, 2010; White et al., 2018) are 
the Fixed Height Approach (FIX) and the Variable Height Approach (VAR). Both approaches 
depend heavily upon the structure and features of the ecosystem at hand and should be 
adjusted by the user as needed. Both the FIX approach as well as the VAR approach were 
conducted for each of the three CHMs for comparison of outcomes between the data sets and 
the two opening detection approaches.  

5.1.1.4.1 Fixed Height Approach 
For the fixed height approach, the minimum height of a given piece of vegetation, above which 
it is not considered regrowth vegetation but rather established vegetation, must be determined. 
Given the presence of large boggy, swampy patches in the study area, which result in small 
plant growth, this threshold had to be small enough to include short yet mature and established 
coniferous vegetation growing under these adverse conditions. It was determined that a pixel 
of the CHM should be considered an opening if the value was less than 1.30 m. Thus, vegetation 
below a height of 1.30 cm was considered regrowth vegetation or structural opening, whereas 
vegetation above this threshold was considered established vegetation, as it is mostly safe from 
ungulates (Downing & Pettapiece, 2006). This includes small growth established vegetation in 
the wetlands, as well as vegetation in the early stages of maturity in the drier uplands. No 
differentiation between trees and other forms of vegetation, such as shrubs, was made. The 
resulting map shows “opening” where height of vegetation is £ 1.30 m and “no opening” where 
height of vegetation is > 1.30 m. 

5.1.1.4.2 Variable Height Approach 
The variable threshold considers the surrounding area and classifies each pixel as “opening” or 
“no opening” depending on the average canopy height surrounding it. The method applied here 
is based on the technique presented by Gaulton and Malthus (2010). Here, two values must be 
determined. The first is the variable height threshold. This value indicates the height which a 
given piece of vegetation must have in comparison to the surrounding canopy cover height for 
it to be considered regrowth vegetation or no vegetation (opening) or established vegetation 
and thus part of the canopy cover (no opening). Gaulton and Malthus (2010) use the ratio of 
canopy drip line to canopy height to derive this threshold. The relative height of the canopy 
drip line is applicable in the ecosystem of Sitka spruce plantations in the UK as examined by 
Gaulton and Malthus (2010), however, most vegetation at the study site in question is 
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characterized by black spruce rather than other coniferous trees. In contrast to pine trees, for 
example, black spruces depict a very different growth structure, which is characterized by their 
branches growing vertically distributed along the trunk rather than branches forming a distinct 
bulk of foliage at the upper half of the tree. This makes it difficult to determine a relative 
height of canopy drip line (fig. 21).  

	
Figure 21 Schematic depiction of silhouette of the majority of trees found at the study (a) vs silhouette of mature 
pine trees (b). 

Given the distinct vegetation structure of the boreal forest and the great heterogeneity 
within the vegetation, a different approach of determining the variable height threshold was 
used. Coming back to the issue about taking even very small growth established vegetation 
into consideration, a threshold of 25% was chosen for the variable height approach. This is a 
much lower value than used by Gaulton and Malthus (2010) and White et al. (2018), however, 
after an in-situ assessment of the vegetation structure in the study area, it became clear that 
the forest is too heterogeneous in height and structure to apply a higher threshold and still 
classify small trees as tree vegetation.  
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Figure 22 Process of deriving a binary map of openings using the variable height approach. Left: The original CHM. 
Middle: Top of Canopy Layer, depicting the maximum values of the CHM in a 100 x 100 m moving window. Right: 
The resulting binary map of openings in the canopy, showing openings in white and canopy in black. Openings are 
areas where ToC * 0.25 < CHM.  
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In order to take the surrounding area into account, a new layer was created, 
representing the Top of Canopy (ToC). This was achieved by applying a moving maximum 
filter in a 100 x 100 m (500 x 500 pixel) window to the CHM. The window size had to be 
slightly larger than the largest clear cut area (95 m across) so that the ToC would not dip 
within these areas characterized by a low average vegetation height and make them 
undiscernible in the subsequent analysis. At the same time, the window size had to be small 
enough to consider the height variations between the various tree stands. For example, upland 
spruce stands in the study area are characterized by a higher vertical vegetation growth than 
wetland conifers and a smaller height than birch tree stands. In the next step, each pixel in the 
CHM was classified as “opening”, if the CHM value was £ 25 % of the corresponding pixel in 
the new ToC layer. Conversely, if the CHM pixel value was > 25%, the pixel was classified as 
“non-opening” (fig. 22).  

5.2 Validation of Opening Detection 
Validation data was derived from in situ sampling during a field campaign in July of 2018 (fig. 
26). The process of stratification and determining the appropriate amount and location of the 
sample points shall be discussed in the following sections. The details of the in-situ sampling 
are presented in the field plan which can be found in the field plan (Appendix C).  

5.2.1 Sampling Design 
This study focusses on the impact of anthropogenic disturbances on the boreal forest ecosystem. 
Canopy opening patterns differ vastly between areas that were previously disturbed by human 
interference versus area that have been untouched by human. To make sure that these 
differences are considered and adequately sampled, the first stratification step had to include 
the differentiation between a) areas that were impacted by human disturbances, and b) areas 
that were left at their natural state. Another emphasis of this study is the comparison of 
accuracy of various approaches regarding different size openings. It is to be expected that the 
accuracy of opening detection will vary especially between very small and very large openings. 
To find out the relative accuracies for different opening sizes, a second level was introduced, 
referred to as Opening class. Thus, the study area was stratified into two levels: 

1) Disturbed vs. undisturbed areas in the study area 

a. Altered areas are defined as altered by human influence such as clear cuts, 
seismic lines, roads etc. 

b. Natural areas are defined as the inverse areas of the altered areas stratum  

2) Opening (size) class 

a. Opening class 0: No Opening 

b. Opening class 1: 0 –  4 m2 

c. Opening class 2: 4 –  20 m2 

d. Opening class 3: 20 –  200 m2 

e. Opening class 4: > 200 m2 
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For the first stratification level, disturbed areas were identified based on visual 
interpretation of the LeafOn Orthomosaic and the CHMALS (fig. 23). Based on literature review 
(White et al., 2018), the fixed height approach on CHMALS (ALS_FIX) was expected to deliver 
the highest accuracy of opening classification and therefore offered the best base for validation 
data stratification.  

	
Figure 23 Mask of disturbed and undisturbed areas in the study area. 

While the spatial accumulation of all edges should be included to determine the total 
effect of the human influence on the study area, they were not considered in this step. Edge 
effects can magnify the influences of human disturbance on physical and chemical conditions, 
plant growth, plant community composition, wildlife behaviour and the interactions between 
these factors on a much greater scale than the actual disturbance itself (Dabros et al., 2018). 
However, since edge effects have different ranges in which they influence a given site, and these 
ranges cannot be determined in the framework of this thesis, edge influences are neglected in 
the delineation of anthropogenically disturbed areas.  

Within these areas (altered vs. natural), the second stratification level was determined 
by size class. Class 1 represents openings that are not included in common definitions of 
functional openings due to their small size limiting a significant increase of PAR on the ground. 
It was nonetheless included in this study to examine LiDAR’s and photogrammetry’s ability 
to detect even very small structural openings in the canopy cover. Size classes 2, 3 and 4 were 
chosen on the criterion to be easily distinguishable by the surveyor in the field. Traditionally, 
very large openings like seismic lines, which are part of a bigger opening system, would not be 
included in the traditional definition of functional opening, however, in this ecosystem, seismic 
lines and clear cuts are a critical part of the disturbance regime and thus had to be included 
in the definition of structural opening.  

In the opening map derived from ALS_FIX, within each size class stratum, the 
appropriate number of sample points was determined based on the opening size variability, 
using equation 2 (Kershaw et al. 2016). 
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, =
-./#.

0.
 (2) 

where 

n = number of points required for desired precision E, with the probability 

      level implied by the value of t 

t = Student’s t (in this case Z-test) 

CV = coefficient of variation (in percent) for the opening size sampled 

E = allowable error or desired precision (in percent) for the average area. 

To apply this equation, first, the variation in size of the openings in each size class was 
calculated to determine CV. Next, we applied a confidence level of 80%, which resulted in 1.3 
for the Z Value (Student’s t) and 20% for the corresponding allowable error (E). n depended 
on the variability of opening sizes within each size class. As was to be expected, non-opening 
areas (class 0) showed a very high CV in size which resulted in a high number of samples. 
However, given that the focus on this study is the detection of openings rather than non-
openings, the sample size was reduced to 100 for non-openings in altered areas and to 300 for 
non-openings in natural areas. These sample sizes reflect the ratio of 1:3 of the proposed sample 
sizes derived from equation 2. Furthermore, to strengthen statistical reliability, sample size for 
size class 2 in the natural areas was raised from 26 to 30. This resulted in a total of 1835 sample 
points (table 3).  

Most sample sites were measured in-situ. Where access to a sample site was impossible 
due to safety concerns, or where the surveyor had low confidence in the correctness of the 
classification, visual image interpretation based on the LeafOn orthomosaic was conducted to 
fulfill the required sample size and confidence of the validation data set. The distribution of 
the sample sites in the AoI is presented in figures 24 and 25. 
Table 3 Sample sizes of each stratum. Originally derived sample sizes that had to be changed are given in parenthesis.  

   
N for each Size Class in  
Stratum “Altered” 

N for each Size Class in  
Stratum “Natural” 

Conf.  
Level Z E 0 1 2 3 4 0 1 2 3 4 
80% 1,3 20 100 

(2940) 
116 36 69 396 300 

(8399) 
102 30 

(26) 
104 582 
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Figure 24  Field map of the AoI Kirbe (northern part) with the sample site which contained the sample points visited 
during the field campaign. The individual sample points are not depicted. 
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Figure 25 Field map of the AoI Kirby (southern part) with the sample sites which contained the sample points 
visited during the field campaign. The individual sample points are not depicted. 
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5.2.2 In Situ Sampling 
A precise account of how the in-situ sampling took place is given in the field plan (Appendix 
C). The list of points selected as appropriate random stratified sample, including their UTM 
coordinates, was printed out prior to the field campaign. Each morning, a list of coordinates 
that could realistically be visited that day, considering weather conditions, was decided upon. 
The location of each sample point was found and determined by a Real Time Kinematic Global 
Positioning System (RTK GPS), consisting of a base station, which was set up in the morning, 
and a mobile rover, on to which a hand-held device was attached. Using a method of carrier-
phase differential GPS positioning, the current position was obtained in centimeter-level 
accuracies in real time.  

Upon approaching a sample site, a picture was taken with the camera facing straight 
up, being held at breast height (1.3 m). If the sky was visible at the centre of the image, that 
point was classified as one of the opening classes (fig. 27). The size class had to be determined 
to the best of the surveyor’s judgement and knowledge of the opening structure. If no sky was 
visible, the sample point was classified as no opening (class 0; fig. 27). In addition to the 
opening class, vertical vegetation structure and classification confidence was also noted, ranging 
from 1 (very confident) to 3 (not confident at all). Sample point classifications with confidence 
levels of 3 were manually verified via visual image analysis upon finishing the field campaign.  

	
Figure 26 The field crew on our last day of work in the AoI (from left: Jack Sugden, Annette Dietmaier, Keifer 
Biddle). A typical seismic line is visible as a deep cut in the forest canopy on the right. 
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Figure 27 Photographs taken during the in-situ sampling of a) class 1 opening, b) class 2 opening, c) class 3 opening, 
d) class 4 opening and e) no opening (class 0). The classification is based on whether sky is visible in the centre of 
the photograph taken.  

5.3 Comparison of Opening Detection Accuracies and Opening 
Characteristics 
Before opening characteristics were examined, the CHMs produced were compared to CHMALS. 
Differential images were produced to visualize divergence patterns and the Root Mean Square 
Error (RMSE) was calculated for CHMDAP and CHMHybrid compared to CHMALS (equation 3; 
Sachs & Hedderich, 2009).  

a) b) 

c) d) 

e) 
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'120 =
(34 − 54)

.6
478

,
 

(3) 

 

where 

P = predicted value 

O = observed value 

n = sample size. 

Overall accuracies, patterns of omission and the performance of all six approaches 
relative to opening size was evaluated. The number and size, as well as opening fraction was 
determined. Proportions of openings detected relative to size class gives a sense of whether an 
approach tends to classify openings as larger openings than they were found to be in the field.  

Various opening characterization metrics were applied to all openings larger than 4 m2 
derived from all three data sources and using both approaches. These examinations aim at 
characterizing the geometric features of the openings detected and compare them to each other. 
Opening size distribution was examined using the Zeta distribution (also referred to as the 
discrete Pareto distribution) power-law probability density. This distribution is appropriate for 
characterizing opening size distribution because of its ability to properly depict both a very 
small number of large openings as well as a disproportionally large number of small openings 
(Kellner & Asner, 2009). When plotting on a log-log scale, the negative relation between 
opening frequency and opening size can be described with the parameter λ. The steeper the 
slope of this relation, the higher the value of λ. The values are expected to range between 1.0 
and 3.0 for forested areas. A threshold of 2.0 is generally used to distinguish areas dominated 
by small openings (λ > 2.0) or large openings (λ < 2.0) (Asner et al., 2013). The values of λ 
were derived using a maximum likelihood estimator, following the method as presented by 
Hanel et al. (2017). 

Size itself was examined in average (mean) values, as well as its variability (standard 
deviation) and its median. In addition, a shape index (McGarigal & Marks, 1995) was applied 
to the openings. This shape index (equation 4) characterizes the similarity of an opening to a 
perfectly round circle.  

9ℎ;<=	?,@=A =
<=B?C=-=B

2 ∗ (F ∗ ;B=;)G.I
 (4) 

	

As a normalized ratio, this shape index characterizes the complexity of the boundary of 
an opening. The shape index is 1 for a perfectly round circle, and increases with the complexity 
of the opening boundary. Furthermore, the average height and standard deviation of height 
within openings was calculated applying the opening delineations of each approach to each 
CHM.  

Spatial overlap of the detected openings was evaluated in two parts. The first step was 
to produce a raster of agreement, which shows the sum of all opening maps (where opening = 
1, no opening = 0) and thereby the number of opening maps agreeing on the classification of 
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a specific pixel as opening. Raster of agreement pixel values of 5 for example indicate that this 
pixel was classified as an opening by five of the six approaches. In the second step, the opening 
maps were converted into shapefiles, assigning the value 1 to openings and No Value to non-
opening areas. Using ArcGIS for this step and the following calculations, a decision tree was 
applied to these polygons as presented by Linke et al. (2017). This decision tree does not result 
in a binary layer of overlap and no overlap, but classifies the kind of overlap into four cases 
(fig. 28). For this approach, the reference polygons were the binary opening map that showed 
the highest overall accuracy, and the four overlap cases were computed for each of the 
remaining five maps. The structural overlap threshold (STH), which defines the total minimum 
area of overlap between a given target-map polygon (TMP) and one or more reference polygons 
(RP) was set to 20%. This is the threshold that determines whether an RP was detected (true 
positive). As Linke et al. (2017) state, bot STH and spatial overlap threshold (OTH) must be 
determined based on the research question on hand. Considering that the maps to be compared 
will vary in number, shape and size of the openings detected, an OTH of 50% was chosen. 
These openings do not depict thematic polygons, but rather differences in vegetation structure 
detected by different technologies. Thus, a lower OTH is appropriate.  

	
Figure 28 Decision-tree to assess the polygon-based structural accuracy of a given target map relative to a reference 
map. In this example, both OTH and STH were set to 50%. 

To detect these four cases, first, the two maps to be analyzed had to be intersected. 
The resulting shapefile had to be expanded to include columns for the size of each original 
polygon (A_RP and A_TMP), the size of the intersection and the percentage of the intersect 
compared to the size of the original polygons (P_RP and P_TMP). Then, this layer was 
“dissolved” twice, once with the FID_RP and once with FID_TMP as dissolving factor. In this 
step, the sums of P and A were calculated for each polygon (TMP_diss.SUM_P_TMP, 
RP_diss.SUM_P_RP, TMP_diss.SUM_A_TMP and RP_diss.SUM_A_RP). The next 
step was the selection and export of the cases by attributes: 
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	 Case 1  TMP_diss.SUM_P_TMP >= 0.2 AND  
intersect.P_TMP >= 0.5 AND  
intersect.P_RP >= 0.5 
 

	 Case 2		 TMP_diss.SUM_P_TMP >= 0.2 AND  
intersect.P_TMP >= 0.5 AND  
intersect.P_RP < 0.5 AND 
RP_diss.SUM_P_RP >= 0.5 
 

	 Case 4.1		 TMP_diss.SUM_P_TMP >= 0.2 AND  
intersect.P_TMP >= 0.5 AND  
intersect.P_RP < 0.5 AND 
RP_diss.SUM_P_RP < 0.5 
 

	 Case 3	 TMP_diss.SUM_P_TMP >= 0.2 AND  
intersect.P_TMP < 0.5 AND  
intersect.P_RP >= 0.5 
 

	 Case 4.2		 TMP_diss.SUM_P_TMP >= 0.2 AND  
intersect.P_TMP < 0.5 AND  
intersect.P_RP < 0.5 
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6 Results 
The methods described in Chapter 5 led to six different binary opening/non-opening maps (fig. 
32). First, the derived CHMs shall be compared and their accuracy in relation to CHMALS 
examined. Second, the overall accuracies of each opening detection method will be presented, 
using validation via ground truth sampling. Third, their relative abilities in comparison to 
CHMALS in describing opening characteristics, such as opening size, shape, regrowth height and 
overlap are presented.   

6.1 Comparison of CHMs 
Figure 29 shows the three CHMs produced with normalized vegetation height above 

ground. Differences between the three CHMs, which are due to the fashion the data were 
acquired, were compared using a differential image approach. The results from this examination 
can be seen in figure 30 and provide information on the relative quality of CHMDAP and 
CHMHybrid.  
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Figure 29 Canopy Height Models for from LiDAR data, photogrammetry data and a combination of both. Values 
are height above ground (h.a.g.). It is apparent that there are differences in detail between CHMs that contain DAP 
data and CHMALS. CHMDAP further displays some linear artefacts where the ground was not visible for proper 
ground classification.  
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Figure 30 shows the differential images depicting the similarity of CHMDAP and 
CHMHybrid with CHMALS. For this purpose, CHMDAP and CHMHybrid were each subtracted from 
CHMALS.  Positive values indicate higher values in the LiDAR based CHM, whereas negative 
values describe locations in which photogrammetry based data produces higher values. As 
figure 30 shows, there are stark differences in the divergences between the CHMDAP and 
CHMHybrid, and CHMALS. The differential image with CHMDAP shows large, solid patches of 
high divergence (illustrated in blue and pink), whereas the differential image with CHMHybrid 
is missing these conglomerations of high divergence pixels. Here, areas showing high values and 
thereby a large difference in comparison to the CHMALS, are more spaced out and considerably 
smaller in size.  

	
Figure 30 Differential images of CHMDAP and CHMHybrid compared to CHMALS. 

Figure 30 further shows that most of the divergence between CHMALS and CHMDAP 
takes place in the positive value range, which indicates that CHMDAP values tended to be lower 
than the corresponding CHMALS pixels. This is a result of overestimating DTM values (fig. 31), 
which in turn can be traced back to the limitations of photogrammetry ground classification 
in areas where the ground is not visible from above, such as in high density areas. It is apparent 
from table 4 that CHMHybrid matched with CHMALS within an acceptable allowance of +/-2 m 
across 81% of the study area. The total ranges of divergence from CHMALS did not differ 
considerably (57.3 m for CHMHybrid and 57.2 m for CHMDAP). While the proportion of pixels 
classified within a +/ 10 m value range in the two differential images was quite similar for 
both CHMs (97% for CHMDAP and 98% for CHMHybrid), CHMHybrid had 11% more pixels in the 
+/- 2 m range of the CHMALS than CHMDAP. Surprisingly, the mean divergence from CHMALS 
was larger for CHMHybrid (-1.2 m) than for CHMDAP (0.4 m). Interestingly, the RMSE of both 
images were quite similar, and only slightly better for CHMHybrid.  
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Table 4 Quantitative comparison of CHMDAP and CHMHybrid compared to CHMALS. 

 Min [m] Max [m] Mean 
[m] 

Proportion of 
pixels within  
-10 and 10 m 

Proportion of 
pixels within  
-2 and 2 m 

RMSE 
[m] 

ALS –  DAP -30.0 27.2 0.4 97% 70% 3.6 
ALS –  Hybrid -29.6 27.7 -1.2 98% 81% 3.1 
	
	

	
Figure 31 Differential Image of DTMALS and DTMDAP. Large patches of overestimation of ground values are due 
to photogrammetry’s inability to reliably classify point cloud elements as ground points when the ground was not 
visible from the sensor’s perspective. This leads to the divergence patterns depicted in figure 30. 

Figure 31 shows patches of overestimated ground values in DTMDAP. These are a result 
of limited visibility of the ground in densely forested areas, which leads to match points, located 
in the canopy cover, being classified as ground points. These ground points naturally assume 
the value of the top of canopy, which produces the conglomerations of high overestimation 
depicted in orange and red in figure 31. 

6.2 Comparison of opening detection accuracies  
Figure 32 presents the six derived maps delineating structural openings using each approach. 
It is apparent that there are differences between the maps, especially in terms of number of 
openings, total area classified as opening and average opening size. These differences will be 
discussed in the following sections.  
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Figure 32 Maps showing opening delineations for each approach. Openings are depicted in black, areas classified as 
non-opening are depicted in white. There are visible differences in total area classified as opening, average opening 
sizes and number of openings, all of which will be discussed in the following chapters. 
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Overall accuracies ranged between 63% and 93%, with DAP_FIX showing the lowest 
and ALS_VAR the highest overall accuracy (table 5). The DAP and Hybrid datasets produced 
similar results within each approach. Using the fixed height approach, they both were 82%. 
When applying the variable height approach, the difference in overall accuracy lies at 1%. DAP 
and Hybrid show lower overall accuracies than ALS data in both approaches, however, the 
difference is larger when using the fixed height approach (26%) than when using the variable 
height approach (11%).  

Table 5 further shows errors of omission and commission, which can be translated into 
underestimation and overestimation of openings. Between the data sets within each approach, 
there are stark differences in errors. When using the fixed height approach, ALS shows an 
omission error of 10% and a high commission error for non-openings at 30%. The range of 
errors for this approach using DAP and Hybrid datasets is much larger. At almost no 
commission error for openings (openings are overestimated by only 1%) and a corresponding 
low (2%) error of omission for non-opening, these data sources have a high commission error 
for areas that are classified as non-opening. Their omission error for openings is also high (46%). 
When applying the variable height approach, table 5 shows that the errors of omission in areas 
that are non-opening are relatively similar for all three datasets (24% - 29%). In those same 
areas, DAP and Hybrid data present commission errors of 47%, whereas this this error is only 
8% when using ALS data. Commission errors for areas that are openings are balanced among 
the data sets (7%). The lowest omission error for openings is produced by ALS_VAR (2%), 
compared to 16% by DAP_VAR and 17% by Hybrid_VAR. The individual confusion matrices 
can be found in Appendix D.  
Table 5 Summary of opening detection confusion matrices: Overall accuracies, errors of omission and 
commission [%]. 

         Overall Accuracy     
  
  

Opening  Not Opening  
Omission 
error 

Commission 
error 

 Omission  
error 

Commission 
error 

Fixed Height Approach       
ALS 90 10 2  8 30 
DAP 63 46 1  2 66 
Hybrid 64 46 1  2 65 
Variable Height Approach       
ALS 93 2 7  29 8 
DAP 82 16 7  27 47 
Hybrid 82 17 7  24 47 

	

Figure 33 presents relative opening detection accuracy within the different opening size 
classes. It shows the proportion of openings correctly detected in each class. While there is a 
clear trend of the variable height approach producing the best results for opening detection, 
ALS_FIX produces much better results than the fixed height approach applied on the DAP 
or Hybrid data sets. When classifying non-opening areas, the fixed height approaches show 
much better accuracies. The fixed height approach improves strongly when classifying larger 
openings. In size class 4, accuracies for DAP_FIX and Hybrid_FIX were 75% and 77%, 
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respectively, whereas their accuracies in size class 1 are 7%. The larger an opening, the more 
reliably it can be detected by all methods. It is apparent from figure 33 that approaches applied 
on ALS datasets continuously produces the highest accuracies, which is corroborated by the 
results presented in table 6.  

 

	
Figure 33 Results of canopy opening detection using fixed and variable height approaches by opening size 
classification. 

Table 6 shows the complimentary errors of omission in each opening class, which are 
the negatives of figure 33. They are highest for all approaches in opening class 1 with decreasing 
values for the bigger opening classes. The fixed height approach, as seen above, provides smaller 
errors of omission of no opening areas.  
Table 6 Proportion of incorrectly classified openings/non-openings (errors of omission) relative to opening size 
classes 1 - 4 and non-openings in [%]. 

 Opening size class  
 1 2 3 4 No 

Opening 
Fixed height approach 
ALS 23 17 11 6 8 
DAP 93 92 70 25 2 
Hybrid 93 92 67 23 2 
Variable height approach 
ALS 4 2 1 1 29 
DAP 35 31 28 7 27 
Hybrid 38 40 28 7 24 

Total number of openings detected varied both between data sets and opening detection 
approaches. To characterize canopy opening detection of very small openings, size class one 
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was assessed individually. It is apparent from table 7 that ALS data produced a greater number 
of detected canopy openings, both in size class 1, as well as openings larger than 4 m2. Using 
the fixed height approach, the number of openings detected with ALS data was almost always 
at least twice the number of openings detected by DAP. When applying the variable height 
approach, this trend stays true, however, it is less pronounced. Here, ALS produces 1.3 to 1.5 
times the number of openings detected by DAP and the Hybrid approach, respectively.  

Table 7 further shows that there are marked differences in the proportion of opening to 
non-opening in the AoI. Values range from 19% opening in the canopy cover (DAP_FIX) to 
75% (ALS_VAR). ALS data produced the highest proportion in each approach. Interestingly, 
the values derived using the fixed height (19% –  33%) approach are much smaller than those 
produced with the variable height approach (53% - 75%), with each FIX value more than twice 
the size of the corresponding VAR value. This same trend can be discovered in the total area 
of openings. The total area of openings produced from ALS was 1.1 to 1.5 times more than 
that derived from DAP_VAR or DAP_FIX, respectively. Here, too, the total area of openings 
is around twice the size when using the variable height approach, compared to using the fixed 
height approach.  
Table 7 Number, proportion and total area of openings detected. 

 Number of 
openings  
< 4m2 

Number of 
openings  
> 4 m2 

Proportion 
of opening to  
non-opening 
in AoI [%] 

Total area of 
openings 
[m2] 

Fixed height approach 
ALS 48,465 3450 33 245,92 
DAP 20,969 1731 19 162,37 
Hybrid 18,041 1638 21 172,67 
 
Variable height approach 
ALS 27,075 2171 75 428,18 
DAP 21,258 1736 62 382,03 
Hybrid 18,558 1478 53 346,01 

 

Distribution of detected openings relative to opening size was examined. Table 8 shows 
that the largest proportion of openings detected was size class 2 (4 –  20 m2) when excluding 
openings < 4m2, which are, by far, the most numerous (table 7). Overall, the fixed height 
approach detects more smaller openings and less larger openings. Depending on the approach 
used, between 70% and 89% of all openings detected were classified to be in this size range, 
with ALS_FIX detecting the highest number of size 2 openings and Hybrid_VAR the lowest. 
The fixed height approach detected a smaller proportion of size class 3 openings (20 m –  200 
m2; 19% –  20%) than the variable height approach (21% –  26%). The same trend is true for 
size class 4 openings. Here, ALS produced smaller proportions in each approach, while the 
proportions produced by DAP and Hybrid are relatively similar (2% and 3%, and 4% and 4%).  
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Table 8 Distribution of detected openings relative to size class in percent. 

Data Source Proportion of 
openings  
Size Class 2 [%] 

Proportion of 
openings  
Size Class 3 [%] 

Proportion of 
openings  
Size Class 4 [%] 

Fixed height approach 
ALS 79 19 1 
DAP 79 19 2 
Hybrid 77 20 3 
 
Variable height approach 
ALS 78 21 1 
DAP 70 26 4 
Hybrid 70 27 4 
	

6.3 Comparison of Opening Characteristics  
In the following section, metrics for characterizing size, shape, within-opening vegetation height 
and overlap are applied to all openings > 4m2, derived from all three data sources and using 
both approaches. Size class 1 was excluded to prevent a distortion of the values, since they are 
detected very differently among approaches, and, by their sheer number, would lead to 
misguiding results.  

6.3.1 Average opening size, shape and opening size distribution  
Average opening size based on ALS data was smaller than corresponding values based on DAP 
or Hybrid data sets (table 9). Hybrid_VAR produced the largest mean opening size, which is 
3 times the value of ALS_FIX. While median opening sizes were quite similar among the 
different approaches and data sets, table 9 shows that variability in opening size depended 
more on the approach than the data set used. Within the fixed height threshold, results varied 
slightly around 2500 m2, whereas the variable height approach produced values that were up 
at least twice as high. ALS_VAR showed the highest variability in opening size (7155 m2). 
Table 9 Opening size characteristics for openings sized > 4m2. 

 Mean 
opening size 
[m2] 

Median 
opening size 
[m2] 

SD opening 
size  
[m2] 

Shape Index 
Mean 

Fixed height approach 
ALS 71,3 8,64 2525 2,87 
DAP 93,8 8,4 2429 2,71 
Hybrid 105,4 8,84 2656 2,71 
 
Variable height approach 
ALS 197,2 8,8 7155 2,54 
DAP 220,1 11,16 5625 2,72 
Hybrid 234,1 11,46 5713 2,69 
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The shape index was quite similar among approaches and data sets used. The mean 
values varied slightly between 2.54 (ALS_VAR) and 2.87 (ALS_FIX). The distribution of the 
shape indices for all results is depicted in figure 34.  
	

	
Figure 34 Density histogram for shape indices of the six approaches, showing a clear peak at values between 2.6 
and 2.9. 

T-tests for opening size and shape index were conducted (confidence level = 95%, p = 
0.05). Because the population was not normally distributed, results were confirmed with the 
Wilcoxon Rank Sum W test (Sachs & Hedderich, 2009). Average opening sizes varied 
significantly from each other, whereas the shape index did not show any significant differences 
between the six approaches.  

The distribution of opening size was assessed further using a Zeta distribution. This 
power law distribution is the appropriate means for depicting the negative slope between 
opening size and the frequency of that opening size. As described in table 7, a disproportionate 
number of openings are very small, and only a few openings are classified as large openings. 
This relation is depicted in figure 35. The steepness of the slope is described by the λ value. 
The higher this value of λ, the greater the proportion of small openings. The fixed height 
approach produced a constant λ of 1.8, with a slightly smaller value when applied to the Hybrid 
data set (1.71). The variable height approach produces the highest λ value when used on the 
ALS data set (1.77) and slightly lower when used on the DAP or Hybrid data set (1.55 for 
DAP_VAR and 1.52 for HYB_VAR). Figure 35 shows these findings in the form of Zeta 
distribution graphs. They demonstrate that the fixed height approach continuously produced 
a higher proportion of smaller openings, regardless the data set at hand. Especially when 
applying the variable height approach to the DAP and the Hybrid data sets, small openings 
seem to be lost and merged into bigger openings. This explains a lower λ value for the variable 
height approach and is reflected in the larger mean opening size value presented in table 9 for 
DAP_VAR and Hybrid_VAR.  
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Figure 35 Zeta opening size distributions for each approach. 

6.3.2 Regrowth vegetation height within openings 
Differences in height within openings as suggested by the three CHMs was analyzed for 

significant difference based on the approach used for the opening delineation (table 10). Using 
the Wilcoxon Rank Sum W test (p = 0.5), it was determined that the height within each set 
of delineated openings varied significantly between the CHMs, while regrowth vegetation height 
might seem relatively similar, comparing the three different opening delineations on the same 
CHM. Using the fixed height approach, vegetation height in CHMALS in openings detected by 
all three data sets varied between 0.27 and 0.30 m. In contrast, table 10 shows that vegetation 
height provided by CHMDAP and CHMHybrid is higher in openings detected by ALS than by 
DAP or the Hybrid approach. Here, values range between 1.96 m and 0.67 m, and 1.90 m and 
0.56 m respectively. The vegetation height is thus more than twice as high, on average, in 
openings detected by ALS in CHMDAP or CHM Hybrid than in those detected by DAP or the 
Hybrid approach. When applying the variable height approach, vegetation height is greater in 
openings detected in CHMDAP and CHMHybrid for all three techniques, with openings detected 
using the Hybrid approach consistently providing the lowest values. It strikes as interesting 
that the average vegetation height in openings detected by the ALS and the Hybrid approach 
using the CHMALS are close to the previously defined fixed threshold of 1.30 m (1.42 and 
1.32m), whereas DAP_VAR produced an average value of 2.15 m.  
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Table 10 Mean vegetation height within openings > 4m2 derived from all opening maps and each based on every 
data set. 

 
Openings located by 

CHM used for height measurement 
 

 ALS DAP Hybrid 
Fixed Height Approach 
ALS 0.28 1.96 1.90 
DAP 0.27 0.67 0.56 
Hybrid 0.30 0.72 0.61 
Variable Height Approach 
ALS 1.42 3.20 3.26 
DAP 2.15 2.16 2.75 
Hybrid 1.32 1.91 1.85 

6.3.3 Overlap and agreement of classifications 
Spatial overlap analysis between all produced opening maps resulted in a raster of agreement 
(fig. 36). This figure shows that most opening maps agree on big openings, and thus displays 
high values (around 5 and 6) on roads, clear cuts, seismic lines and water bodies, indicating 
that at least 5 approaches agree on the classification of these pixels as opening. Higher values 
of disagreement are found further away from seismic lines and point to the areas in which the 
fixed height approach identifies many small individual openings and the variable height 
approach classifies larger, contiguous areas as openings.  

	
Figure 36 Raster of agreement for all six opening detection approaches. The legend shows the number of opening 
maps agreeing on the classification of a pixel as opening. Pixels with the value “0” are not classified as opening by 
any approach. 

Furthermore, the calculation of the decision tree shown in figure 28, which makes a 
distinction between different kind of matches for spatial overlap (quasi 1:1 matches, good 
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matches and poor matches) produced the results presented in table 11. ALS_VAR was chosen 
as the reference map, as it produced the highest overall accuracy (table 5). In this step, the 
area of overlap was categorized by match (case 1 being a quasi 1:1 fit and case 4 being a poor 
match). Interestingly, the fixed height approach did not produce any case 3 matches at all 
(cases in which multiple RP match with one larger TMP) and the variable height approaches 
produced lower values for case 2 than the fixed height approaches. Areas of overlap vary 
markedly among the different approaches, with the variable height approaches producing the 
highest amount of area in case 1 matches, and DAP_FIX and HYB_FIX producing the lowest. 
ALS_FIX has less amount of case 1 area than the DAP_VAR and HYB_VAR, but more than 
the other two fixed height approaches. By far the highest amount of case 4 area is produced 
by ALS_FIX, which produced many singular, small openings. 
Table 11 Total area of overlap [m2] by individual overlap cases, presented for each Target Map with the Reference 
Map ALS_VAR. 

  Case 1 Case 2 Case 3 Case 4 
ALS_FIX 5066 219152 0 21704 
DAP_FIX 112 154307 0 6799 
Hyb_FIX 128 164172 0 7093 
DAP_VAR 227595 1155 4486 4829 
HYB_VAR 224043 45 232 46 

 

Table 12 presents the mean size of the overlapping area in m2. It is apparent that the 
variable height approach produces maps that overlap with ALS_VAR mainly in the bigger 
polygons, such as seismic lines, roads and large areas of connected openings which would be 
classified as a many small openings by the fixed height approach. The fixed height approach 
shows a 10 to 20 times bigger average overlap size for case 2 overlaps than the variable height 
approach.  
Table 12 Mean area of overlaps for each approach [m2]. 

  C1 C2 C3 
ALS_FIX 13.3 100.3 NA 
DAP_FIX 22.4 107.0 NA 
Hyb_FIX 25.6 120.8 NA 
DAP_VAR 2616.0 12.2 15,0 
HYB_VAR 3069.1 5.0 13,6 

	

In table 13, the proportions of the sum of all overlaps in cases 1 –  3 relative to the total 
area identified as opening by the reference map and the target map, respectively, is presented. 
Notably in all cases, the proportion of overlaps relative to the target maps is larger than the 
proportions relative to the reference map. While the variable height approaches produce maps 
with the largest areas of case 1 matches (table 12), ALS_FIX produces an equal proportion of 
overlaps relative to the reference map, while DAP_FIX and Hyb_FIX produce values below 
that. Thus, a maximum of 52% –  54% of the reference map are detected by the target maps. 
The proportion values relative to the target map are higher for the fixed height approaches, 
which signifies that larger areas of the openings detected by the target maps using the fixed 
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height approach have a counterpart in the reference map than those identified by the variable 
height approach.  
Table 13  Proportions of overlapping areas relative to the total area of Reference Polygons and Target Map Polygons. 

 Reference Map Target Maps 
ALS_FIX 0.52 0.91 
DAP_FIX 0.36 0.95 
Hyb_FIX 0.38 0.95 
DAP_VAR 0.54 0.61 
HYB_VAR 0.52 0.65 

6.4 Landscape condition 
As suggested by the Provincial Woodland Caribou Range Plan (2017), metrics on the condition 
of the landscape were evaluated. This provincial plan contains three metrics on landscape 
condition. These will be presented in the following. 

6.4.1 Footprint 
Footprint is defined as “the area of anthropogenic disturbance features, classified by originating 
activity” (Alberta Government, 2017, p. 72). While the classification based on originating 
activity is not possible on the base of remote sensing data alone, the area of anthropogenic 
disturbance features, including clear cuts, roads and seismic lines (fig. 23), was determined to 
amount to 185,590 m2, which constitutes 19 % of the AoI. This assessment is based on the first 
stratification level which was conducted by visual analysis of the CHMALS as well as the LeafOn 
orthomosaic. 

6.4.2 Natural Disturbance 
Natural disturbance, defined as “the area of disturbed and undisturbed habitat affected by 
natural disturbance” (Alberta Government, 2017, p. 72) was assessed on the base of the 
ALS_VAR opening map, excluding all areas discussed in 6.4.1, as the sum of the remaining 
openings detected in the areas unaffected by human disturbance. These openings amount to 
254,431 m2, which constitutes 25 % of the AoI.  

6.4.3 Linear Features 
In the AoI, 26 seismic lines were detected. The majority (9 seismic lines) are North/South 
oriented (average length: 919 m), 3 Northeast/Southwest oriented, 2 Northwest/Southeast 
oriented (average length of diagonal features: 587 m), and 2 West/East oriented (average 
length: 1000 m). The most regular ones, stretching in a longitudinal fashion, were spaced 115 
m apart from each other. In contrast, the diagonal lines did not follow any regularity. The 
total length of all linear features amounts to 13,206 m, which results in a linear feature density 
of 13,206 m/km2. In addition to the linear features, 10 clear cuts were detected, which showed 
an average size 5,900 m2.   
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7 Discussion 
In the following, the previously presented results shall be discussed and their meaning defined 
precisely. To get a sense of how the results and differences in findings relative to each approach 
can be explained, table 14 serves to visualize the systematic differences in the outcomes 
produced by ALS, DAP and the Hybrid data sets.  

7.1 Performance of opening detection procedures 
The following chapters present the accuracies for opening detection approaches. It gives a visual 
impression for the differences in gap classification and concludes with a comparison of the 
different approaches.  

7.1.1 Normalized Vegetation Index 
This study has demonstrated that the NDVI is not a reliable solution for the purpose of 
mapping and quantifying anthropogenic disturbances like seismic lines in the boreal forest. The 
overall accuracies are the lowest of all approaches conducted, and with 50% OvA, the NDVI 
results are certainly not very reliable in the classification of openings and non-openings. There 
are several explanations for these results. First, one has to consider the naturally low 
photosynthetic efficiency of high latitude conifers which is a result of their low demand for 
carbohydrates, which would lead to low NDVI values where the vegetation is in fact healthy 
(Jönsson et al., 2010). In addition to this phenomenon, the high content of coarse woody is 
likely to have further lowered the NDVI within intact tree stands (fig. 8), leading to the 
omission of “non-opening” areas. Most importantly, errors of commission in the same class can 
be linked to an overestimation of biological activity within seismic lines due to grass growth. 
As an estimator of green-ness, the NDVI finds green vegetation everywhere, in the forest and 
in the openings. A similar phenomenon was previously discussed by Chen & Cihlar (2000) and 
Zhirin et al. (2016). The understory vegetation, mostly consisting of Labrador tea, sphagnum 
moss and grass, leads to high NDVI values within anthropogenically disturbed areas. The 
differences between the LeafOff and LeafOn data can be explained by different amounts of 
biological activity and possibly different soil moisture contents, given that the boggy soils of 
the study area can drastically influence the NDVI’s values by absorbing large amounts of NIR 
radiation. If the soil moisture content was not the same at both acquisition dates (which is to 
be expected) the differences in outcomes can be easily explained.  

The use of multispectral images, either retrieved via airborne or spaceborne sensors, has 
been very popular and successfully used in a variety of research studies for decades. This has 
been due to easy access (especially since the institution of open data platforms for Landsat or 
Sentinel), low costs and easy to execute procedures like calculating the NDVI. Further, 
products like the NDVI are comprehensible for the broader public and non-scientific 
stakeholders. Additional advantages include a high temporal resolution which allows for dense 
time series analysis.  

However, due to their inability to penetrate the canopy cover (Wulder, 1998), spectral 
indices are susceptible for a variety of disruptive factors, such as atmospheric perturbations, 
shadowing effects due to the stark spatial differences in forest structure, solar zenith angle and 
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soil reflectance and interference (McDonald et al., 1998). Particularly in higher latitudes, low 
solar zenith angles and large quantities of snow can have significant negative effects on the 
accuracy of winter values (Jönsson et al., 2010). As a mere indicator of greenness, this approach 
is thus not suitable in the context of this study. 

7.1.2 ALS, DAP and Hybrid data sets 
The first research question presented in chapter 1 asks for the accuracies of opening detection 
for ALS and DAP data. While the overall accuracies of the DAP and Hybrid approach are 
quite similar (63% and 64% for the fixed height approach and 82% for the variable height 
approach), table 14 shows that DAP_VAR performs especially poorly in high density areas, 
where openings are strongly overestimated. This is attributed to the underestimation of 
vegetation height when using a DTMDAP, which in turn can be attributed to the overestimation 
of ground points, where vegetation is very dense and the ground cannot be seen by the sensor 
above. This effect can be ameliorated by using a LiDAR derived DTM, as can be seen from 
the corresponding image by Hybrid_VAR in table 14. DAP and Hybrid data resulted in 
underestimation of gap area when applying the fixed height approach especially in low to 
medium density areas. Overall accuracies indicated that there lies a significant advantage in 
using ALS derived products over the DAP or Hybrid data sets. Especially accuracies 
determined for DAP_FIX and Hybrid_FIX produce accuracies (63% and 64%) that are worse 
than the ones produced by the normalized vegetation index presented in the introduction (50% 
and 71%). In contrast to this, ALS_FIX and ALS_VAR were found to have overall accuracies 
of 90% and 93%, respectively. The findings of this study correspond to the value range of OvA 
found by White et al. (2018), but disagree with their results, in that the variable height 
approach produced a marked improvement of OvA for DAP and Hybrid data sets in this study, 
whereas it resulted in a lower OvA relative to using the fixed height approach in the study of 
White et al. (2018). This might be attributed to different thresholds applied in this study (25%) 
and White et al. (2018; 64%), different sizes of the moving window (100 m and 11 m 
respectively) and different physiological vegetation structures.  

This study showed that ALS and DAP/Hybrid data sets show significant differences in 
the number and size of the detected openings. Using the fixed height approach especially, the 
number of openings < 4 m2 detected by ALS is more than twice the number detected by DAP 
and Hybrid. The difference becomes less stark using the variable height approach, but 
ALS_VAR still detects 20% more openings than DAP_VAR or Hybrid_VAR. The same trend 
is observed for the number of openings > 4 m2, with the differences being less pronounced for 
these bigger openings (table 7). However, ALS continuously produces the highest number of 
openings in all approaches. Table 8 shows that a bigger fraction of openings is classified as 
class 3 and 4 openings by DAP and Hybrid data sets when using the variable height approach 
and as class 4 openings when using the fixed height approach. It is remarkable that ALS_FIX 
produced the highest number of openings, and ALS_VAR produced the largest total area 
classified as opening. The DAP and Hybrid data sets must therefore omit a significant number 
of openings covering a significant area of land. This can be seen in the raster of agreement (fig. 
36), which shows that most opening maps agree on the classification of seismic lines and other 
human disturbances, and reports higher disagreement in parts of the AoI off of the main grid 
of linear features and clear cuts. Here, only 2 –  3 maps detect openings in what is classified as 
“natural” in the first stratification level. This explanation is corroborated by the strikingly high 
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errors of omission for the DAP and Hybrid datasets presented in table 5. It becomes apparent 
in table 5 that commission errors for openings and omission errors for non-openings are relative 
homogenous among the different approaches. Omission errors for openings and commission 
errors for non-openings show remarkable differences. DAP and Hybrid show omission errors of 
46% for the fixed height approach compared to 10% by ALS_FIX and 16% and 17% 
respectively by DAP_VAR and Hybrid_VAR compared to 2% by ALS_VAR. This can be 
detailed further by figure 33. DAP and Hybrid fail to detect class 1 –  3 openings with relatively 
small differences in their detection rates when using the fixed height approach. These errors of 
omission explain the main source for differences in overall accuracy between ALS and DAP 
and the lower number of openings detected by DAP and Hybrid data sets.  

A previous study by White et al. (2018) showed similar patterns. Comparing ALS and 
DAP for characterizing canopy openings in the temperate rain forest of British Columbia, they 
found significant differences in opening sizes and numbers, as well as large differences in the 
overall accuracies of the detection methods. In their study, errors of omission for DAP exceeded 
the 80% mark in both the fixed and the variable height approach. These large errors of 
commission further commensurate with results produced by Zielweska-Büttner et al. (2016). 
Using fixed height thresholds of 1 m and 2 m for low (< 8 m) and tall (> 8 m) growth forests 
in southern Germany to detect canopy openings using DAP data, they found errors of omission 
to be 48% in tall growth forests in 2012. Zielewska-Büttner et al. (2016) and White et al. (2018) 
ascribe these values to the significant impacts shadows and occlusions can have on 
photogrammetric approaches. These effects are especially pronounced in tall growth forests. 
Particularly small openings can be completely “covered” by shadows or occluded by tall trees 
at certain viewing angles, so that DAP and the Hybrid data set perform very poorly in the 
detection of small openings. Especially using the fixed height approach, only class 4 openings 
can reliable be detected using DAP/Hybrid (table 6). Class 1 –  3 openings are omitted by 
ratios of 67 - 93%. The variable height approach performs better, however, here, too, errors of 
omission for opening classes 1 –  3 lie between 27% (class 3) and 38% (class 1). Table 14 serves 
to provide a sense of the different opening detection outcomes. It is clearly visible that the 
variable height approach produces more area classified as opening than the fixed height 
approach.  This, however, comes at a cost of omitting small growth trees and results in a 
greater error of omission of non-opening areas. Figure 33 shows that non-opening areas are 
more poorly classified by the variable height threshold approach, which is due to small trees 
being classified as openings.   

Average opening size differs markedly between the approaches, with ALS producing the 
smaller average openings size values. ALS_FIX by far produced the smallest opening size. This 
corresponds with the highest total number of openings detected by any approach. DAP and 
Hybrid, neglecting small trees and failing to detect small openings, show higher average opening 
sizes. This is amplified by using the variable height approach, which may lower the cut off 
height value so that even more small growth trees may by disregarded (table 14). This effect 
stands in contrast to the expectation that the variable height approach will perform better in 
the low density lowland areas. Table 9 shows that using the fixed and the variable height 
approach, these two data sets produce larger average openings sizes, with the Hybrid data set 
resulting in the largest average opening size. 
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Table 14 Matrix of opening classification results in low, medium and high vegetation density segments of the AoI 
for each approach. 
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The evaluation of overlaps helps to analyze the similarity between the opening detection 
maps further. The raster of agreement shows that most maps agree on the detection of large 
openings, like the network of linear features, roads and clear cuts. However, table 12 details 
that DAP and Hybrid data sets, when using the fixed height approach, overlap with ALS_VAR 
by a quasi 1:1 match in a very small amount total area (112 and 128 m2 respectively). Only 
small detected openings with an average size of 22.4 m2 and 25.6 m2 respectively meet openings 
detected by ALS_VAR in a case 1 match. The bulk of opening area detected by DAP and 
Hybrid are overlapping ALS_VAR in case 2 matches, which means that multiple DAP/Hybrid 
openings together match one reference map polygon. The number for case 2 matches is only 
higher for ALS_FIX. However, the overlap shows stronger patters between the fixed height 
and variable height approaches than between ALS and DAP/Hybrid data sets.  

Opening size distributions have previously been examined for tropical forests (Asner et 
al., 2013; Kellner & Asner, 2009; Lloyd et al., 2009) and the temperate rain forest (White et 
al., 2018), but not yet for the boreal forest. Lobo & Dalling (2014) and White et al. (2018) 
conclude that the scaling parameter λ is strongly dependent on the height threshold applied in 
the opening detection process. Lobo & Dalling (2014) report that when the minimum fixed 
height was raised from 2 m to 10 m, λ was reduced from 2.4 to 1.8, which indicated a greater 
abundance of large openings. This tendency is also visible in the present study’s results. The 
variable height approach continuously produces lower scaling parameter values than the fixed 
height approach (fig. 35), indicating a higher percentage of large openings among the total 
number of openings. This is due to the variable height approach occasionally dipping below 
the 1.3 m fixed height threshold and thereby classifying larger areas containing small trees as 
contiguous openings. Considering the large number of small openings in the AoI (table 7), 
linear features exert a noticeable effect on the opening size distribution, lowering the scaling 
parameter below 2.0. Given that a λ value of < 2.0 characterizes a given forested area as 
dominated by larger openings, this is true for this study’s AoI according to the scaling 
parameters derived from each approach (fig. 35).  

This study is based on a very high density DAP point cloud (table 2). Since a 0.2 m 
resolution is maintained throughout the CHM derivation process, the omission of small 
openings is expected to be due to confounding optical factors, such as occlusions and shadows, 
as well as physical tree sway, all of which lower the quality of the DSMDAP. These factors, 
having no impact on the data collection process of ALS, do not affect the ability of ALS to 
detect very small openings, even though the point density is lower for the ALS point cloud. A 
visual impression of these differences can be gained by figure 29, depicting the different CHMs 
with visible differences in detail.  

7.2 Is it possible to produce a reliable CHM from DAP data? 
Financially, photogrammetry is an attractive alternative solution for opening detection and 
mapping. While the exact pricing depends on the individual situation at hand (such as required 
hardware, location of the AoI, accessibility etc.), costs for DAP imagery acquisition is estimated 
to be around one half to one third of the costs of ALS data (S. Chen et al., 2017; White et al., 
2013). In addition to lower expenses, photogrammetry data can easily be collected by using a 
consumer grade optical digital camera and UAV (Rahman et al., 2017), therefore avoiding the 
need for special equipment like an ALS scanner. Easier and more affordable data acquisition 
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in areas that demand stringent monitoring of endangered habitat could potentially facilitate 
more frequent inventory cycles (White et al., 2013). For example, if the DAP approach proves 
to be an appropriate means of opening detection and mapping, the monitoring could be 
conducted without any ALS data acquisition, which is expensive and requires more 
coordination with third party aircraft companies. If the DAP approach is not appropriate, but 
the Hybrid approach proves to reliably detect and map openings in the AoI, a DTMALS could 
be acquired once and then be used for the derivation of a CHMHybrid, using a topical DSMDAP 
after given time increments for time series analysis.  

As discussed in chapter 7.1, there are significant differences in the performance of DAP 
and Hybrid models compared to ALS derived models. The overall accuracies of DAP and 
Hybrid products do not differ strongly from each other. This corresponds with results produced 
by Lovitt et al. (2017). In their study, they characterize microtopographic variability in 
peatlands of north-western Alberta, using photogrammetry data and enhancing their data set 
with an ALS point cloud. They did not find a significant improvement when using ALS data 
in combination with DAP data.  

Using the fixed height approach, DAP and Hybrid OvA (63% and 64%, respectively) 
lie more than 25% below the OvA achieved by ALS_FIX (90%). Using the variable height 
approach, DAP and Hybrid achieve an OvA of 82%, compared to 93% produced by ALS_VAR. 
These results compare to 59.50% for HYB_FIX and 50.00% for HYB_VAR as presented as 
overall accuracies by White et al. (2018). In their study, they concluded that a hybrid dataset, 
utilizing a DTMALS and a DSMDAP does not provide a sufficiently reliable CHM to detect 
canopy openings. There are several aspects to this decision, which, given the slightly elevated 
OvA values in this study, must be considered.  

 Photogrammetry is a completely optical method and as such, is susceptible to a series 
of interference factors which are harmless to the active remote sensing method that is LiDAR. 
The most common ones are occlusions and shadows (White et al., 2013, 2018). With the right 
viewing angle, occlusions can conceal openings small enough to disappear behind tall trees. 
These openings will not appear in the DSM generated, nor in the derived CHM. Shadows can 
further confuse the matching software. If the centre of an opening is dark enough so that the 
software is unable to detect an appropriate matching pair, the dip in canopy height will go 
unseen and not appear in the DSM, nor in the CHM. These factors are exacerbated by object 
movement: even moderate breezes can lead to tree tops swaying more than one meter or more, 
which causes significant matching problems, especially if the tree sway is in different directions 
between flight lines. This can create false parallax (White et al., 2013). These phenomena 
explain the high errors of omission using the DAP/Hybrid datasets, affecting especially the 
smaller openings.  

Using photogrammetry data to generate the DSM and combining it with a DTMALS 
will not result in significant improvements to the overall accuracy, as can be seen in table 5. 
This finding is supported by the results of Lovitt et al. (2017) and Kukkonen et al. (2017), who 
compared two image matching procedures and ALS data for forest inventory characterization 
in a typical managed boreal forest environment in southern Finland. If the DSM is derived 
from DAP data, it will be affected by the optical shortcomings described before. Substituting 
the DTMDAP with a DTMALS will thus not result in a noticeable improvement. Interestingly, 
applying a DTMDAP did not result in a worsening of OvA of the CHMDAP compared to 
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CHMHybrid as could be expected, given the very limited applicability for DTM generation from 
DAP data.  

The clear majority of structural openings in the AoI fall into the category of size class 
1 (table 7) and even when excluding this size class from analysis, size class 2 openings 
(functional openings) make up 70% –  80% of all openings detected. It is thus of the utmost 
importance for a tool that is applied in this setting to reliably detect and map very small 
openings in the canopy cover. Monitoring purposes demand the ability to provide regrowth 
vegetation measurements within openings and a reliable number of disturbances. CHM height 
within openings delineated by ALS approaches are continuously higher for CHMDAP and 
CHMHybrid, indicating that a large proportion of these areas are not identified as openings in 
the DAP/Hybrid CHMs. Regrowth vegetation height within openings are significantly 
different. This finding is in line with the study by Vastaranta et al. (2013), which found that 
lower height percentiles are greater when using DAP and that predictions regarding height, 
basal area and stem volume from ALS are more accurate than those from DAP. The DAP and 
Hybrid data sets thus fail to provide this criterion. Table 14 provides a visual impression of 
this shortcoming. Especially in medium and high vegetation density parts of the AoI, DAP and 
Hybrid miss a plethora of openings. In the high-density column, it becomes apparent that even 
whole linear features, such as seismic lines delineated by tall, densely growing trees, can go 
unnoticed by the DSMDAP.  

Using DAP data could potentially cut data acquisition costs in half. However, while 
DAP_VAR and Hybrid_VAR provide an acceptable overall accuracy and overview of the 
state of a forest at hand, DAP_FIX and Hybrid_FIX show overall accuracies that are lower 
than the ones produced by the NDVI, and, with 63% and 64% respectively, cannot be 
considered as equal counterparts to the same approach applied to an ALS data set. Thus, using 
DAP data with the fixed height approach, regardless whether combined with a DTMALS or not, 
is not recommended for a reliable detection and mapping of structural openings and/or 
regrowth vegetation, especially of small openings, in the forest canopy of the boreal forest of 
Alberta. Therefore, the claim by White et al. (2018), that stereo-image matching does not 
consistently capture small openings, is supported by the results in this study.   

7.3 Are ALS and DAP appropriate means for the quantification of human 
disturbances? 
Human disturbances in the AoI follow systematic patterns, be it the regular, grid shaped 
network of seismic lines or symmetrical, rectangular or circle shaped clear cuts distributed all 
across the AoI. They are also usually of considerable size, and except for linear features which 
are generating strong regrowth vegetation, can be made out easily via visual interpretation. 
These disturbances are easier to detect and map than small, naturally caused openings. For 
one, occlusions play almost no role, since the majority of the opening is still visible, even when 
a small part of it close to the opening edge might be occluded by tall trees. Further, within 
large openings, DAP software is more likely to detect an appropriate amount of matching pairs 
and can therefore classify the opening more reliably. Due to the absence of trees within large 
openings, tree sway and falsification of matching pairs can be avoided, too. These limiting 
factors have no impact on ALS. Large openings are equally as easy to detect for ALS as they 
are for DAP (fig. 33). 
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 If one aims at solely assessing the number of and area affected by large scale openings, 
ALS and even DAP are appropriate means. However, as soon as the research shifts towards 
identifying structural openings of all sizes in the forest at hand, DAP data quickly becomes 
obsolete. As table 14 shows, even seismic lines, which have almost become overgrown but are 
still distinguishable for ALS data sets, were not identified by the DAP and Hybrid data sets, 
neither using the fixed height nor the variable height approach. This poses an important 
limitation for the usage of DAP data. While clear cuts and big roads can be identified, narrow 
parts of linear features are already being missed in high vegetation density areas. This study 
shows that ALS outperforms DAP in both the fixed and the variable height approach, even 
when DAP is enhanced by a DTMALS. This finding is corroborated by the results produced by 
Kukkonen et al. (Kukkonen et al., 2017) and White et al. (2018), who state that ALS is more 
capable of a detailed description of the canopy surface than DAP.   

 However, it is important to note that both ALS as well as DAP pose a radically different 
approach to opening detection compared to normalized differential indices. By taking into 
consideration vegetation height, two advantages arise. First, greenness does not play a role in 
the detection of openings anymore, which enables a reliable opening detection process regardless 
of the season and/or light conditions. And even DAP produces data sets, which, by including 
the height component of the vegetation, and in combination with a reliable DTM, can lead to 
good results in coarser scale applications. Thus, by moving away from spectral signals and 
towards the actual measurement of vegetation height, opening detection further approaches 
the reality found on ground. Second, vegetation height within openings is an important 
ecological factor which should be considered in the monitoring process of a given forested area 
(White et al., 2015). It allows conclusions to be drawn about the state of vegetation 
regeneration within openings. This is of special importance in areas where regrowth generation 
has been encouraged by ecological measurements such as the planting of seedlings or saplings 
(Wu et al., in prep.). This essential step cannot be reliably fulfilled by DAP data sets. As table 
10 shows, vegetation height is continuously overestimated by the DAP and even the Hybrid 
data sets, which would lead to an overly positive evaluation of the regrowth vegetation height, 
possibly a reduction in political and/or technical support of plant regrowth and overall a 
misrepresentation of the state of the boreal forest in general. Regarding shape index, no 
significant difference is detected, which leads to the conclusion that for the assessments of edge 
effects, both ALS, and DAP and Hybrid data sets might be appropriate means.  

 While ALS generally fulfills all requirements to accurately characterize the disturbance 
patterns of the forest at hand, the ecosystem of the AoI is further disrupted by human 
interference which is not as apparent from either ALS and/or DAP data sets. These include 
effects the oil sand mining activities have on the boreal forest, such as toxicity levels in local 
streams and rivers, which have been shown to be elevated near oil sands fields in Alberta for 
13 priority pollutants (PPE) by Kelly et al. (2010). Another impact human disturbance might 
exert on the boreal forest is a change in species composition and changes in biodiversities, both 
alpha biodiversity within openings, as well as beta biodiversity between openings and forested 
areas. Correspondingly, species population shifts have been noticed in the study area, such that 
within linear features, deer and bear population raise markedly (Hebblewhite, 2017).  

 In conclusion, ALS is an appropriate means of characterizing human disturbance in the 
study area, as well as naturally cause openings. DAP and Hybrid datasets show more limited 
possibilities of application. Using these approaches, a majority of human disturbance, but not 
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all of its impacts, can be detected. The greatest shortcomings lie in densely vegetated areas, 
where even long stretches of linear features can go unnoticed by a DSMDAP. In order to not 
only detect and map disturbances, but characterize the impacts they have on the ecosystem, 
further research is needed into how the aforementioned effects of human interference might 
correlate with opening characteristics available from ALS and DAP products. Links might be 
found between biodiversity and, among others, factors such as vegetation structure, underlying 
substrate, opening size.  

7.4 Can ALS or DAP help fulfill the goals stated by the Provincial 
Woodland Caribou Range Plan? 
The PWCRP intends for a detailed monitoring process of the woodland caribou habitat, which 
coincides with the AoI (Alberta Government, 2017). ALS_VAR was able to help answer all 
three demands posed by the PWCRP in order to define landscape condition. The area of 
anthropogenic disturbance features was classified, albeit manually, with the visual support of 
opening classification using ALS_VAR. Research on an automated approach to delineate linear 
features in the study has been undertaken by Cole et al. (2016) and showed promising results. 
However, identifying pixels with sub-meter accuracy to be affected by an opening or not is 
heavily supported by 3D data such as ALS data sets.  

The area affected by natural disturbance was reliably identified by ALS_VAR. ALS_VAR 
showed the greatest overall accuracy, and, most importantly for the detection of small scale, 
naturally caused disturbances, showed the highest accuracies for class 1 and 2 openings, where 
the DAP and Hybrid data sets showed errors of omission of up to 93%. This step could hardly 
be undertaken without the help of ALS data. The need for manual opening detection or the 
last resort solution of applying a differential vegetation index was avoided by using 3D data 
which allowed small scale opening classification with accuracies of 96% in identifying class 1-2 
openings as such.  

The amount and density of linear features was manually derived from the finished opening 
map produced on the basis of ALS_VAR. Linear features were clearly discernible from 
undisturbed forest areas and could therefore be counted and measured with high precision. 
Should this be applied to larger scale AoIs, an automated procedure, such as proposed by Cole 
et al. (2016) or a deep learning artificial intelligence (AI) would be appropriate. 

The current study found that ALS_VAR was of significant assistance in the process of 
answering the PWCRP’s monitoring goals to a large extent. However, some questions remain 
to be answered: first, how can areas of anthropogenic disturbance features be classified 
(automatically) by originating activity, and, second, how can the ALS products used in a more 
automated procedure in this undertaking.  

7.5 Potential sources of error and room for improvement 
Promising results were produced by ALS data, but DAP was only partially able to catch up 
with accuracies produced by ALS. This study has shown that there is still abundant room for 
further progress in this matter. Trying to improve the performance of DAP would prove to be 
a worthwhile investment promoting affordable and easy environmental monitoring. First, 
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potential sources of error shall be discussed, followed of a suggestion of further research 
questions. 

The RTK GPS, while highly accurate in most cases, can suffer from noticeable errors when 
the connection between the rover and the satellite, or between the base station and the satellite 
is obstructed by a dense vegetation cover. This may affect the accuracy of the coordinates of 
ground sample points and thereby distort the accuracies of the opening detection procedures 
(Rahman et al., 2017). Since there was no way around sampling coordinates under dense canopy 
cover, these errors were reduced by waiting for the rover to receive a signal good enough for at 
least a 10 cm accuracy.  

Furthermore, field classification was designed to perfectly sample the fixed height approach. 
This was done by determining whether sky was visible at breast height (1.3 m). Thus, the 
variable height approach was evaluated by a validation data set which was not specifically 
designed for this approach. To reduce impacts on the validation process, sample points 
previously collected in-situ were verified via visual image interpretation after the field 
campaign.  

Another factor influencing the accuracies of the variable height approach is the technical 
derivation of the opening classification. In this study, this was done following the process 
presented by Gaulton & Malthus (2010) with altered threshold values. The biggest source of 
improvement is likely the choice of the value for the moving window. In the two aforementioned 
studies, the maximum value within the moving window was chosen as the new pixel value. 
Instead of the maximum value, standard deviation was also applied in this study, but it was 
discarded after accuracies and especially errors of omission increased further using a standard 
deviation instead of a maximum value moving window. Before analysis, the point clouds were 
cleaned of outliers and error points clearly above the canopy cover, but remaining single tall 
trees might still have noticeable impacts on the value of the moving window pixels. 
Alternatively, a 99 or 98 percentile applied to the ToC derivation before applying a moving 
window could get rid of very tall trees. However, since canopy height is relatively homogenous 
in the AoI, this might only yield a minor positive effect. In addition, a different approach than 
a moving window, such as an object based approach, might return even more reliable results.  

Finally, even though there was no significant difference in accuracies between the DAP and 
Hybrid approaches, there is room for improvement in the production of a DAP derived DTM. 
For example, the patches of very large offset in figure 31 could be masked and interpolated 
with surrounding DTM values. This would provide a very coarse scale DTM, however, it would 
reduce the overestimation of ground values. Alternatively, the original point cloud could be 
thinned further to only contain the lowest points within 20 x 20 m or even 50 x 50 m grid 
squares. This way, the interpolation would again result in a very coarse resolution DTM, 
however, it would eliminate patches of high divergence from the DTMALS, which might produce 
a more realistic DTM overall.   

This study, for the first time, compared ALS and DAP data sets for the detection and 
mapping of openings in the canopy cover of the boreal forest in northwestern Canada. While 
opening detection has been performed in tropical and temperate rain forests before (White et 
al., 2018), this is the first attempt at defining structural vs. functional openings, as was 
necessary in the AoI, given the highly variable forest structure between lowlands and highlands. 
The results found in this study are in line with findings from previous studies on the subject 
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matter of comparing ALS and DAP for characterizing forest structure. New additions, such as 
multi-image matching, the examination of class 1 structural openings and the improvement of 
the DSMDAP by using a spike-free DSM triangulation approach, resulted in higher OvA values 
than those found by previous studies.   
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8 Conclusions and Outlook 
This study set out to define canopy openings in the boreal forest of Alberta, Canada and to 
determine the capabilities of ALS and DAP to detect and map structural openings in said AoI. 
The investigation of opening detection accuracies has shown that DAP derived products, with 
and without the enhancement of using a DTMALS, did not produce the reliability and accuracy 
in detailed mapping of openings required to be considered a viable alternative to ALS data 
sets. While results for DAP and Hybrid techniques were better for the variable height approach, 
using the fixed height approach on these data sets resulted in worse OvA than when using a 
simple differential vegetation index. This study discussed the reasons for the lower OvA using 
DAP/Hybrid data sets: occlusions, shadows and tree sway make the detection of small openings 
especially hard and sometimes impossible to achieve using the optical method that is aerial 
photogrammetry.  

The resulting marked differences in opening sizes, number of detected openings and 
limited spatial overlap indicate that DAP should not be used to detect and map small openings 
and even linear features in high density areas. The characterization of the boreal forest of 
Alberta was conducted with the highest OvA using ALS_VAR (93%), though ALS_FIX had 
an OvA of 90%. Both approaches applied to ALS produced reliable results in all size classes. 
The results of this study suggest thus that the perfect approach would consist of a combination 
of ALS_VAR and ALS_FIX, with the opening detection rate of ALS_VAR and the lower 
error of omission of small trees of ALS_FIX.  

The investigation of CHMDAP and CHMHybrid has shown that there is no significant 
improvement when using a DTMALS to enhance the CHMDAP, and, conversely, there is no 
significant shortcoming of using a CHMDAP. However, neither should be used when mapping 
small scale openings in the boreal forest of Alberta, since many factors can worsen the quality 
of a DSM derived from an optical data source, which leads to the omission of a marked number 
of small openings.  

The evidence from this study suggests that ALS is an appropriate means to quantify 
human impact in the study area, as well as small scale structural openings of less than 4 m2. 
The CHMDAP and CHMHybrid, when used with the variable height threshold approach, suffice 
to map large human disturbances on a coarse scale, however, they do not fulfill the criteria for 
reliable detection of small scale human and natural disturbances in the AoI.  

ALS_VAR facilitated in answering the questions stated by the PWCRP regarding the 
monitoring of the woodland caribou habitat. In combination with further in-situ and optical 
analysis, these findings can be further improved. 

Taken together, these results suggest that ALS is an invaluable means for characterizing forest 
structure going beyond the mere detection and mapping of canopy openings. ALS point clouds 
can facilitate the monitoring of the current states of habitats, not just that of the woodland 
caribou. The characteristics of a disturbed vs. a pristine habitat are certainly species-specific, 
however, the results derived from ALS data sets can be applied to a wide range of ecological 
research questions. The next step inevitable is utilizing the produced results in a variety of 
modeling procedures, either to derive forest attributes straight from ALS point clouds, such as 
stem number, basal area, diameter, height and volume, or to implement them in bigger models. 
For example, an  ALS derived  DTM can  be used for  advanced  local  and regional hydrological 
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modeling, and impacts of increased solar radiation reaching the ground on biodiversity could 
be modeled based on a CHMALS. The final step is then to employ the resulting findings in 
appropriate management plans, policies and practices applied by the government, forestry 
professionals and possibly even oil exploitations companies themselves, such as spatial and 
temporal limitations of oil exploration campaigns and the usage of heavy machinery, 
afforestation, and continued progress supervision.  

Given that DAP is an attractive, affordable and easily accessible data source, further 
research into the derivation of detailed CHMs from either DAP or Hybrid data sets is 
recommended. This would lead to a facilitation of monitoring, modeling and ultimately, 
management of vulnerable ecosystems like the Canadian boreal forest. At the current state, 
DAP is not able to produce the accuracies needed for reliable and helpful ecological inventory 
assessment, however, the results produced in this and other studies justify optimism that with 
further software and hardware development, 3D modeling of forest ecosystems will become 
more and more reliable and affordable
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Appendix A: Visualization of Digital Terrain Models derived from ALS 
and DAP. Values are m above sea level. 
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Appendix B: Batch scripts for 3D points clouds  
The following batch scripts derive DTMs, DSMs and CHMs. First, the batch script processing 
ALS data is presented. The following two batch scripts process DAP data. The detailed purpose 
of each batch script is specified in the first line.  
	
Appendix B 1: Batch script for ALS data 
	
:: Batch script for the processing of LiDAR data into DEM, DSM and 
CHM 
:: Author: Annette Dietmaier  
:: Calgary, August 2018 
 
 
::::::::::::::: 
:: Set paths :: 
::::::::::::::: 
 
:: sets Path to the folder that stores las binary files 
SET PATH=%PATH%;E:\Annette\LAStools\bin; 
 
:: set path to the folder that will contain the results and the raw 
file 
SET FILES=E:\Annette\ALS 
 
:: sets path to raw lidar file 
set RAW_LIDAR=%FILES%\*.laz 
 
:: sets path to normalized file with subcircles 
set SUBCIRCLE_NORMALIZED=%FILES%\subcircle_normalized\*.laz 
 
:: make temporary storage folder for partial CHMS 
set TEMP_CHM_DIR=%Files%\Products\CHM 
 
 
::::::::::::::::::::::::: 
::  Check Input Files  :: 
::::::::::::::::::::::::: 
 
:: check if file conforms to the ASPRS LAS 1.0 to 1.4 specifications 
lasvalidate -i %RAW_LIDAR% ^ 
  -o %FILES%\validate_report.xml 
 
start %FILES%\validate_report.xml   
 
 
:::::::::::::::::::: 
:: Set parameters :: 
:::::::::::::::::::: 
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set STEP=0.2 
set SPIKE=0.3 
SET CORES=5 
set KILL=0.45 
set SUBCIRC=0.2 
 
ECHO Start computing 
 
 
::::::::::::::::::::: 
:: START COMPUTING :: 
::::::::::::::::::::: 
 
:: 1. Visualize 
 
lasview -i %RAW_LIDAR% 
 
:: 2. Make data manageable by creating files that are easier to 
compute 
 
lastile -i %RAW_LIDAR% ^ 
  -tile_size 250 ^ 
  -buffer 10 ^ 
  -cores %CORES% ^ 
  -odir %FILES%\tiles ^ 
  -olaz 
 
:: 3. Classify noise  
 
lasnoise -i %FILES%\tiles\*.laz ^ 
  -cores %CORES% ^ 
  -odir %FILES%\noise ^ 
  -olaz 
 
:: 4. Classify ground 
 
lasground_new -i %FILES%\noise\*.laz ^ 
  -compute_height ^ 
  -ignore_class 7 ^ 
  -spike %SPIKE% ^ 
  -wilderness ^ 
  -cores %CORES%% ^ 
  -odir %FILES%\ground ^ 
  -olaz 
 
:: 5 Classification 
:: 5.1 Classify vegetation, buildings etc. (requires height to be 
computed in step 4) 
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lasclassify -i %FILES%\ground\*.laz ^ 
  -small_trees ^ 
  -small_buildings ^ 
  -drop_classification 7 ^ 
  -cores %CORES% ^ 
  -odir %FILES%\classified ^ 
  -olaz 
   
:: 5.2 Manual classification of noise etc.  
 
 
::::::::::::::::::::: 
:: Derive Products :: 
::::::::::::::::::::: 
 
:: 6 Rasterize DEM 
 
las2dem -i %FILES%\classified\*.laz ^ 
  -keep_classification 2 ^ 
  -elevation ^ 
  -use_tile_bb ^ 
  -step %STEP% ^ 
  -cores %CORES% ^ 
  -odir %FILES%\Products\DEM ^ 
  -obil 
 
:: 7 Rasterize DSM 
 
lasthin -i %FILES%\classified\*.laz ^ 
  -subcircle %SUBCIRC% ^ 
  -step %STEP% ^ 
  -ignore_class 7 ^ 
  -highest ^ 
  -cores %CORES% ^ 
  -odir %FILES%\subcircle ^ 
  -olaz 
 
las2dem -i %FILES%\subcircle\*.laz ^ 
  -elevation ^ 
  -use_tile_bb ^ 
  -step %STEP% ^ 
  -cores %CORES% ^ 
  -odir %FILES%\Products\DSM ^ 
  -obil  
 
:: 9.Rasterize CHM  
:: 9.1 Normalize Image for CHM (should have been in done step 4, 
this step is just for reinssurance) and lose points classified as 
anything else but ground and vegetation 
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lasheight -i %FILES%\classified\*.laz ^ 
  -replace_z ^ 
  -drop_below 0 ^ 
  -cores %CORES% ^ 
  -drop_classification 7 ^ 
  -drop_classification 6 ^ 
  -odir %FILES%\normalized ^ 
  -olaz 
 
:: 9.2 Thin data set to include highest points only, and duplicate 
each point in a certain perimeter to represent width of laser beam
  
lasthin -i %FILES%\normalized\*.laz ^ 
 -subcircle %SUBCIRC% ^ 
 -step %STEP% ^ 
 -highest ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -odir %FILES%\subcircle_normalized ^ 
 -olaz 
 
:: 9.3 Five sets of blast2dem to detect highest points only, 
starting at different minimum heights. This will create a spike-free 
CHM   
  
blast2dem -i %SUBCIRCLE_NORMALIZED% ^ 
 -step %STEP% ^ 
 -cores %CORES% ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -use_tile_bb ^ 
 -odir %TEMP_CHM_DIR% -odix _00 -obil 
  
blast2dem -i %SUBCIRCLE_NORMALIZED% ^ 
 -drop_z_below 5 ^ 
 -step %STEP% -kill %KILL% ^ 
 -cores %CORES% ^ 
 -use_tile_bb ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -odir %TEMP_CHM_DIR% -odix _05 -obil 
  
blast2dem -i %SUBCIRCLE_NORMALIZED% ^ 
 -drop_z_below 10 ^ 
 -step %STEP% -kill %KILL% ^ 
 -cores %CORES% ^ 
 -use_tile_bb ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -odir %TEMP_CHM_DIR% -odix _10 -obil 
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blast2dem -i %SUBCIRCLE_NORMALIZED% ^ 
 -drop_z_below  15 ^ 
 -step %STEP% -kill %KILL% ^ 
 -cores %CORES% ^ 
 -use_tile_bb ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -odir %TEMP_CHM_DIR% -odix _15 -obil 
  
blast2dem -i %SUBCIRCLE_NORMALIZED% ^ 
 -drop_z_below 20 ^ 
 -step %STEP% -kill %KILL% ^ 
 -cores %CORES% ^ 
 -use_tile_bb ^ 
 -drop_classification 6 ^ 
 -drop_classification 7 ^ 
 -odir %TEMP_CHM_DIR% -odix _20 -obil 
  
PAUSE 
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Appendix B 2: Batch script for DAP data (DTM derivation) 
 
:: Batchscript for the processing of DAP data into DTM 
:: Author: Annette Dietmaier 
:: Munich, May 2018 
 
 
::::::::::::::: 
:: Set paths :: 
::::::::::::::: 
 
:: Sets Path to the folder that stores las binary files 
SET PATH=%PATH%;D:\Annette\LAStools\bin; 
 
:: set path to the folder that will contain the results and the raw 
file 
SET FILES=D:\Annette\DAP_LeafOff 
 
:: sets path to raw DAP file 
SET RAW_DAP=%FILES%\KirbySmallGridLeafOff2017.laz 
 
 
::::::::::::::::::::::::: 
::  Check Input Files  :: 
::::::::::::::::::::::::: 
 
:: check spatial resolution ("spacing") for input in spikefree 
parameter 
lasinfo -i %RAW_DAP% ^ 
  -last_only ^ 
  -compute_density 
 
   
::::::::::::::::::::: 
:: Sets parameters ::  
::::::::::::::::::::: 
 
set STEP=0.2 
set CORES=11 
set KILL=100 
 
ECHO Start computing 
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::::::::::::::::::::: 
:: START COMPUTING :: 
::::::::::::::::::::: 
   
:: 1. Visualize 
 
lasview -i %RAW_DAP% 
 
:: 2. Make data manageable by creating files that are easier to 
compute  
 
lastile -i %RAW_DAP% ^ 
  -tile_size 250 ^ 
  -buffer 30 ^ 
  -cores %CORES% ^ 
  -odir %FILES%\tiles ^ 
  -olaz 
 
:: 3. Classify noise  
 
lasnoise -i %FILES%\tiles\*.laz ^ 
  -cores %CORES% ^ 
  -odir %FILES%\noise ^ 
  -olaz 
 
:: 4. Classify ground 
 
lasthin -i %FILES%\tiles\*.laz ^ 
  -step 1 ^ 
  -lowest ^ 
  -cores %CORES% ^ 
  -odir %FILES%\thinned ^ 
  -odix _thinned ^ 
  -olaz 
 
lasground_new -i %FILES%\thinned\*.laz ^ 
  -step 10 ^ 
  -bulge 0.5 ^ 
  -spike 0.1 ^ 
  -offset 0.1 ^ 
  -all_returns ^ 
  -drop_classification 7 ^ 
  -extra_coarse ^ 
  -compute_height ^ 
  -olaz ^ 
  -cores %CORES% ^ 
  -odir %FILES%\ground ^ 
   
:: 5. Manually classify noise in lasview 
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::::::::::::::::::::::::: 
:::: Derive Products ::::  
::::::::::::::::::::::::: 
 
:: 6. Rasterize DTM 
 
las2dem -i %FILES%\ground\*.laz ^ 
  -keep_classification 2 ^ 
  -elevation ^ 
  -kill %KiLL% ^ 
  -step %STEP% ^ 
  -cores %CORES% ^ 
  -odir %FILES%\DTM_tiles ^ 
  -obil 
PAUSE 
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Appendix B 3: Batch script for DAP data (DSM derivation) 
 
:: Batchscript for the processing of DAP data into DSM 
:: Author: Annette Dietmaier 
:: Munich, June 2018 
 
 
:::::::::::::::: 
:: Set paths  :: 
:::::::::::::::: 
 
:: Sets Path to the folder that stores las binary files 
SET PATH=%PATH%;D:\Annette_forreal\LAStools\bin; 
 
:: set path to the folder that will contain the results and the raw 
file 
SET FILES=D:\Annette\DAP_LeafOn 
 
:: sets path to raw DAP file 
SET RAW_DAP=%FILES%\KirbySmallGridLeafOn2017.laz 
 
:: sets path to de-noised file with subcircles 
set SUBCIRCLE="%FILES%\subcircle\*.laz 
 
 
::::::::::::::::::::::::: 
::  Check Input Files  :: 
::::::::::::::::::::::::: 
 
:: Check spatial resolution ("spacing") for input in spikefree 
parameter 
lasinfo -i %RAW_DAP% ^ 
  -last_only ^ 
  -compute_density 
 
 
:::::::::::::::::::: 
:: Set parameters ::  
:::::::::::::::::::: 
 
set STEP=0.1 
set CORES=11 
set SUBCIRC=0.1 
 
ECHO Start computing 
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::::::::::::::::::::: 
:: START COMPUTING :: 
::::::::::::::::::::: 
   
:: 1. Visualize 
 
lasview -i %RAW_DAP% 
 
:: 2. Make data manageable by creating files that are easier to 
compute  
 
lastile -i %RAW_DAP% ^ 
  -tile_size 250 ^ 
  -buffer 30 ^ 
  -cores %CORES% ^ 
  -odir %FILES%\tiles ^ 
  -olaz 
 
:: 3 Classification 
:: 3.1 Classify noise  
 
lasnoise -i %FILES%\tiles\*.laz ^ 
  -cores %CORES% ^ 
  -odir %FILES%\noise ^ 
  -olaz 
 
:: 3.2 Manual noise classification in lasview 
 
PAUSE 
 
 
::::::::::::::::::::::::: 
:::: Derive Products ::::  
::::::::::::::::::::::::: 
 
:: 4. Thin data set to include highest points only, and duplicate 
each point in a certain perimeter to represent width of laser beam 
 
lasthin -i %FILES%\noise\*.laz ^ 
  -subcircle %SUBCIRC% ^ 
  -drop_classification 14 ^ 
  -drop_classification 6 ^ 
  -drop_classification 7 ^ 
  -step %STEP% ^ 
  -highest ^ 
  -cores %CORES% ^ 
  -odir %FILES%\subcircle ^ 
  -olaz 
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:: 6. Rasterize DSM 
 
las2dem -i %FILES%\subcircle\*.laz ^ 
  -elevation ^ 
  -drop_classification 7 ^ 
  -use_tile_bb ^ 
  -step %STEP% ^ 
  -cores %CORES% ^ 
  -odir %FILES%\DSM_tiles ^ 
  -obil  
   
PAUSE 
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Appendix C: Field Plan 
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1	Introduction	
	
In	 this	study,	we	aim	at	quantifying	 the	 impact	of	human	disturbance	on	Boreal	Forests	 in	
Northern	Alberta,	Canada.	The	Boreal	Forest	of	Alberta	is	not	only	home	to	wildlife	species	
like	the	woodland	caribou,	wolves,	moose	and	deer,	but	the	same	area	covers	the	world’s	
third	largest	oil	bitumen	deposit.	While	some	of	the	boreal	forest’s	species	are	endangered	
and	require	special	protection	in	the	shape	of	national	and/or	provincial	wildlife	conservancy	
legislation,	oil	sand	in	Alberta	has	been	exploited	for	decades.	To	locate	oil	sand	deposits,	oil	
companies	have	cut	down	parts	of	the	forest	in	linear	features	or	seismic	lines,	which	allow	
for	the	scanning	of	the	soil	beneath	for	bitumen.	These	seismic	lines	create	a	network	of	clear	
cut	alleys	spanning	across	vast	areas	of	Alberta.	Among	their	effects	on	the	environment	are	
direct	 and	 indirect	 negative	 impacts	 on	 wildlife	 like	 caribou	 and	 wolf	 populations	
(Hebblewhite,	2017).		
	
To	detect	openings	in	the	boreal	forest,	we	are	using	four	approaches:	a	LiDAR	based	Canopy	
Height	Model	(CHM),	a	CHM	based	on	photogrammetric	surface	data	and	LiDAR	terrain	data,	
a	 Digital	 Aerial	 Photogrammetry	 (DAP)	 based	 approach	 and	 a	 traditional	 vegetation	 index	
based	 on	 a	 multispectral	 (RGB-N)	 image	 of	 the	 study	 site.	We	 will	 compare	 their	 overall	
accuracies	and	their	relative	accuracies	compared	to	the	LiDAR	based	approach.		
	
Many	 studies	 have	 been	 conducted	 on	 the	 generation	 and	 effects	 of	 openings	 in	 forest	
canopies,	 predominately	 focusing	 on	 both	 temporally	 and	 spatially	 discrete	 events.	 The	
majority	of	the	literature	studied	temperate	forests	and	rain	forests,	with	only	a	handful	of	
authors	examining	the	forests	of	higher	 latitudes	(Vepakomma	et	al.,	2008).	Ground	based	
surveys	are	lengthy	and	costly	and	produce	questionable	results	which	are	often	affected	by	
an	error	of	omission	of	around	25%	(White	et	al.,	2018).	The	 latest	comparison	of	 relative	
performances	between	LiDAR	and	DAP	data	in	this	application	was	done	by	White	et	al.	(2018)	
who	compare	a	LiDAR	based	CHM	with	a	CHM	for	which	the	Surface	Model	was	derived	from	
DAP	data.		
	
Our	study	site	is	characterized	by	a	higher	variety	in	tree	phenology,	especially	in	height,	than	
regions	of	 interest	 in	previous	studies.	Tree	height	 in	 temperate	and	rain	 forests	 is	usually	
homogenous,	whereas	 the	boreal	 forest	of	northern	Alberta	exhibits	 a	wide	 range	of	 tree	
height,	with	small	trees	growing	in	the	bogs	and	fens	of	the	lowlands,	and	pine	trees	reaching	
up	to	35	m	in	height	in	the	uplands.	Given	that	3D	approaches	are	much	more	precise	than	
ground	based	surveys	(White	et	al.,	2018),	it	is	necessary	to	test	previous	approaches	of	3D	
canopy	detection	for	their	applicability	in	the	Canadian	boreal	forest.	Furthermore,	opening	
detection	based	on	only	DAP	data	will	be	tested	and	its	relative	performance	compared	to	the	
LiDAR	based	approach	will	be	determined.		
	
We	 hypothesize	 that	 it	 is	 possible	 to	 generate	 a	 CHM	 with	 sufficient	 accuracy	 to	 detect	
openings	that	require	treatment	according	to	the	Alberta	wild	life	conservancy	policies,	using	
a	 solely	 DAP	 based	 approach,	 which	 would	 make	 mapping	 of	 canopy	 openings	 in	 areas	
affected	by	the	oil	sand	industry	more	accessible	and	affordable	and	therefore	more	effective	
for	wildlife	protection	than	previous	mapping	techniques.		
	
To	test	this	hypothesis,	we	validate	our	digital	models	using	ground	truth	data	collected	in	our	
study	site.	This	field	plan	details	the	methods	applied	to	gather	this	information.	Our	variables	
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are	vegetation	structure	across	the	vertical	scale	(types	A-F),	which	will	be	used	to	characterize	
results	from	the	Variable	Height	Approach,	and	the	presence	of	an	opening	in	the	continuous	
canopy	cover	(Opening,	No-Opening),	which	will	be	used	to	validate	both	the	results	from	the	
Variable	Height	and	Fixed	Height	Approaches.	Conducting	a	GPS	RTK	survey	when	taking	the	
measurements	will	provide	the	exact	geolocation	of	each	field	site	to	enable	synchronization	
of	the	ground	truth	data	with	the	CHM	models.		
	
2	Study	Area	
	
2.1	Overview	
	
The	study	site	(fig.	1)	is	located	near	Conklin,	AB.	This	part	of	the	boreal	forest	is	characterized	
by	 a	mixture	of	 uplands	 and	 lowlands,	 dispersed	 across	 gently	 undulating	 terrain	 (Natural	
Regions	Committee,	2006).	A	significant	share	of	the	low-lying	regions	are	treed	bogs	and	fens,	
with	black	spruce	and	tamarack	being	the	dominating	tree	species.	Considering	the	bogs	and	
fens	of	the	low	lands	with	the	interspersing	dry	upland	ridges	(which	are	dominated	by	jack	
pine),	the	study	area	comprises	a	considerable	variety	of	forest	and	tree	phenology.	The	entire	
study	 site	 is	 affected	by	a	multitude	of	 seismic	 lines	and	 some	deactivated	oil	 exploration	
infrastructure	(Queiroz,	2018).		

	
Figure	1	Area	of	Interest:	Kirby	South	(application	area),	study	area	(training	area),	access	roads	and	seismic	
lines.	
	
2.2	Study	sites		
To	 assess	 opening	 detection	 capabilities	 regarding	 human	 disturbances	 vs.	 natural	
disturbances,	and	depending	on	opening	size,	the	sampling	points	have	been	selected	using	a	
stratified	sampling	technique,	using	two	strata:	
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1) Altered	vs.	natural	areas	in	the	study	area	
a. Altered	areas	are	defined	as	 altered	by	human	 influence	 such	as	 clear	 cuts,	

seismic	lines,	roads	etc.	

b. Natural	areas	are	defined	as	the	inverse	areas	of	the	altered	areas	stratum		

2) Opening	class	
a. Opening	class	0:	No	Opening	

b. Opening	class	1:	0	–	4	m2	

c. Opening	class	2:	4	–	20	m2	

d. Opening	class	3:	20	–	200	m2	

e. Opening	class	4:	>	200	m2	

Random	points	were	selected	within	each	stratum,	the	number	of	points	depending	on	the	
size	variability	of	openings	within	each	opening	size	class.	The	list	of	coordinates	to	be	sampled	
will	be	printed	and	readily	available	to	surveyors.		
	
3	Field	Measurements	
	
3.1	Sampling	vertical	vegetation	structure	
	
Upon	arrival	at	a	sample	point,	the	surveyor	will	characterize	the	vertical	vegetation	structure	
at	the	sample	point	based	on	six	schematic	categories	(fig.	2):	

	
Figure	2	Types	of	 vertical	 vegetation	 structure	 for	ground	 sampling.	This	 is	 a	 schematic	 classification	of	
vegetation	and	should	be	used	with	discretion.	
	
On	the	y-axis,	100	represents	the	top	of	the	canopy.	For	example,	if	the	bulk	of	the	vegetation	
at	the	coordinate	is	growing	in	the	lower	vertical	third,	it	is	to	be	classified	as	Type	A.	If	there	
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is	a	thick	canopy	layer	in	the	upper	third	and	dense	understory	vegetation,	it	will	be	classified	
as	Type	F.	This	information	might	be	of	use	when	assessing	error	patterns	in	the	evaluation	
stage	of	this	study.		
	
3.2	Sampling	crown	closure	
Crown	closure	will	be	determined	based	on	the	visibility	of	sky	through	the	canopy	cover.	
The	surveyor	will	take	a	picture	looking	straight	up,	placing	the	camera	at	breast	height	
(1.30	m).	

* If	the	point	sampled	is	exposed	to	the	sky	by	an	opening	between	two	trees	and	not	
by	openings	within	the	canopy	of	one	tree,	it	will	be	characterized	as	“opening”.	The	
size	class	will	have	to	be	estimated	by	the	surveyor.			
	

* If	the	crown	closure	is	not	complete	and	allows	for	the	sky	to	be	visible	on	the	
ground,	but	there	is	no	opening	created	by	distance	to	another	tree	(e.g.	thin	and	
porous	but	homogenous	canopies	with	little	openings	between	the	leaves	or	
branches	of	the	same	tree),	the	point	will	be	characterized	as	“no-opening”.		
	

* If	the	sky	overhead	is	not	visible	on	the	ground,	the	point	will	be	characterized	as	
“no-opening”	
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4	Field	Protocol	
1. Set	up	GPS	RTK	system			

a. projection:	UTM	12	N,	NAD	83	
b. measure	antenna	height	

2. Approach	site	and	note	Point	ID	
3. Note	GPS	coordinates	and	time	of	acquisition	
4. Take	picture	at	1.30	m	looking	straight	up	
5. Define	“opening”	or	“no-opening”	on	the	classification	sheet	
6. Classify	vegetation	according	to	the	understory	vegetation	type	classification	sheet	

	
	
5	Equipment	list	&	Classification	Sheets	

• Navigation:		
o handheld	GPS	
o orthophotos	
o site	maps	with	sample	points	
o compass	

• Site	sampling:	
o digital	camera	
o field	sheet	(attached	to	this	field	plan)	
o pencils	
o eraser	
o clipboard	

• Office:		
o Computer		
o ArcMap		
o Excel		
o LAStools	
o R	
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Appendix D: Confusion Matrices 
In the following, the raw confusion matrices of the accuracy assessment are presented. They 
provide the data behind tables 5 and 6. First, binary assessment results will be shown (tables 
15 –  20), followed by the assessment relative to opening size class (tables 21 –  26).  

 
Table 15 Confusion matrix for ALS_FIX, binary opening detection. 

ALS_FIX Reference 0 Reference 1 
Classified 0 336 147 
Classified 1 28 1324 

 
Table 16 Confusion matrix for DAP_FIX, binary opening detection. 

DAP_FIX Reference 0 Reference 1 
Classified 0 357 680 
Classified 1 7 791 

 
Table 17 Confusion matrix for Hybrid_FIX, binary opening detection. 

Hybrid_FIX Reference 0 Reference 1 
Classified 0 357 654 
Classified 1 7 817 

 
Table 18 Confusion matrix for ALS_VAR, binary opening detection. 

ALS_VAR Reference 0 Reference 1 
Classified 0 258 22 
Classified 1 106 1449 

 
Table 19 Confusion matrix for DAP_VAR, binary opening detection. 

DAP_VAR Reference 0 Reference 1 
Classified 0 265 230 
Classified 1 99 1241 

 
Table 20 Confusion matrix for Hybrid_VAR, binary opening detection. 

Hybrid_VAR Reference 0 Reference 1 
Classified 0 278 245 
Classified 1 86 1226 
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Table 21 Confusion matrix for ALS_FIX, relative to reference by opening size class.  

 Reference Opening Size Class 
ALS_FIX 1 2 3 4 No Opening 
Opening 154 101 182 887 29 
No Opening 47 20 22 57 336 
 
 
Table 22 Confusion matrix for DAP_FIX, relative to reference by opening size class.  

 Reference Opening Size Class 
DAP_FIX 1 2 3 4 No Opening 
Opening 14 10 61 706 8 
No Opening 187 111 143 238 357 
 
Table 23 Confusion matrix for Hybrid_FIX, relative to reference by opening size class.  

 Reference Opening Size Class 
Hybrid_FIX 1 2 3 4 No Opening 
Opening 14 10 68 725 8 
No Opening 187 111 136 219 357 
 
Table 24 Confusion matrix for ALS_VAR, relative to reference by opening size class 

 Reference Opening Size Class 
ALS_VAR 1 2 3 4 No Opening 
Opening 193 119 202 935 107 
No Opening 8 2 2 9 258 
 
Table 25 Confusion matrix for DAP_VAR, relative to reference by opening size class. 

 Reference Opening Size Class 
DAP_VAR 1 2 3 4 No Opening 
Opening 130 84 148 879 100 
No Opening 71 37 56 65 265 
 
Table 26 Confusion matrix for Hybrid_VAR, relative to reference by opening size class. 

 Reference Opening Size Class 
Hybrid_VAR 1 2 3 4 No Opening 
Opening 124 73 148 881 87 
No Opening 77 48 56 63 278 
 


